Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Biochem ; 425(1): 13-7, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22394617

ABSTRACT

Celiac disease (CD) is an immune-mediated disorder affecting genetically predisposed subjects. It is caused by the ingestion of wheat gluten and related prolamins. A final diagnosis for this disease can be obtained by examination of jejunal biopsies. Nevertheless, different analytical approaches have been established to detect the presence of anti-tissue transglutaminase antibodies that represent a serological hallmark of the disease. In this work, we explored a new method for the diagnosis of CD based on the detection of serum anti-transglutaminase antibodies by resonance energy transfer (RET) between donor molecules and acceptor molecules. In particular, we labeled the liver transglutaminase (tTG) enzyme from guinea pig and the rabbit anti-tTG antibodies with a couple of fluorescence probes that are able to make RET if they are located within with Förster distance. We labeled tTG with the fluorescence probe DyLight 594 as donor and the anti-tTG antibodies with the fluorescence probe DyLight 649 as acceptor. However, due to the large size of the formed complex (tTG/anti-tTG), and consequently to the low efficiency energy transfer process between the donor-acceptor molecules, we explored a new experimental approach that allows us to extend the utilizable range of RET between donor:acceptor pairs by using one single molecule as donor and multiple molecules as energy acceptors, instead of using a single acceptor molecule as usually occurs in RET experiments. The obtained results clearly show that the use of one donor and multiacceptor strategy enables for a simple and rapid detection of serum anti-transglutaminase antibodies. In addition, our results point out that it is possible to consider this approach as a new method for a wide variety of analytical assays.


Subject(s)
Celiac Disease/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Fluorescence Resonance Energy Transfer , Animals , Autoantibodies/blood , Celiac Disease/immunology , Guinea Pigs , Transglutaminases/metabolism
2.
J Nanophotonics ; 42010 Sep 22.
Article in English | MEDLINE | ID: mdl-21403765

ABSTRACT

Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2-3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures.

3.
Appl Spectrosc ; 64(8): 918-22, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20719056

ABSTRACT

We studied the fluorescence properties of several potential picosecond lifetime standards suitable for two-photon excitation from a Ti:sapphire femtosecond laser. The fluorescence emission of the selected fluorophores (rose bengal, pyridine 1, and LDS 798) covered the visible to near-infrared wavelength range from 550 to 850 nm. We suggest that these compounds can be used to measure the appropriate instrument response functions needed for accurate deconvolution of fluorescence lifetime data. Lifetime measurements with multiphoton excitation that use scatterers as a reference may fail to properly resolve fluorescence intensity decays. This is because of the different sensitivities of photodetectors in different spectral regions. Also, detectors often lose sensitivity in the near-infrared region. We demonstrate that the proposed references allow a proper reconvolution of measured lifetimes. We believe that picosecond lifetime standards for two-photon excitation will find broad applications in multiphoton spectroscopy and in fluorescence lifetime imaging microscopy (FLIM).


Subject(s)
Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Spectroscopy, Near-Infrared/methods , Microscopy, Fluorescence, Multiphoton/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL