Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Cancer ; 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39478117

ABSTRACT

Breast cancer (BC) is defined by distinct molecular subtypes with different cells of origin. The transcriptional networks that characterize the subtype-specific tumor-normal lineages are not established. In this work, we applied bulk, single-cell and single-nucleus multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 patients with BC to show characteristic links in gene expression and chromatin accessibility between BC subtypes and their putative cells of origin. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal BC and luminal mature cells and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like (SOX6 and KCNQ3) and luminal A/B (FAM155A and LRP1B) lineages. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like BC, suggesting an altered means of immune dysfunction. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single-cell level is a powerful tool for investigating cancer lineage and highlight transcriptional networks that define basal and luminal BC lineages.

2.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961519

ABSTRACT

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

3.
Nat Genet ; 54(9): 1390-1405, 2022 09.
Article in English | MEDLINE | ID: mdl-35995947

ABSTRACT

Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Transformation, Neoplastic/genetics , Humans , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/genetics , Pancreatic Neoplasms
4.
JAMA ; 305(15): 1568-76, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21505135

ABSTRACT

CONTEXT: The identification of patients with inherited cancer susceptibility syndromes facilitates early diagnosis, prevention, and treatment. However, in many cases of suspected cancer susceptibility, the family history is unclear and genetic testing of common cancer susceptibility genes is unrevealing. OBJECTIVE: To apply whole-genome sequencing to a patient without any significant family history of cancer but with suspected increased cancer susceptibility because of multiple primary tumors to identify rare or novel germline variants in cancer susceptibility genes. DESIGN, SETTING, AND PARTICIPANT: Skin (normal) and bone marrow (leukemia) DNA were obtained from a patient with early-onset breast and ovarian cancer (negative for BRCA1 and BRCA2 mutations) and therapy-related acute myeloid leukemia (t-AML) and analyzed with the following: whole-genome sequencing using paired-end reads, single-nucleotide polymorphism (SNP) genotyping, RNA expression profiling, and spectral karyotyping. MAIN OUTCOME MEASURES: Structural variants, copy number alterations, single-nucleotide variants, and small insertions and deletions (indels) were detected and validated using the described platforms. RESULTS; Whole-genome sequencing revealed a novel, heterozygous 3-kilobase deletion removing exons 7-9 of TP53 in the patient's normal skin DNA, which was homozygous in the leukemia DNA as a result of uniparental disomy. In addition, a total of 28 validated somatic single-nucleotide variations or indels in coding genes, 8 somatic structural variants, and 12 somatic copy number alterations were detected in the patient's leukemia genome. CONCLUSION: Whole-genome sequencing can identify novel, cryptic variants in cancer susceptibility genes in addition to providing unbiased information on the spectrum of mutations in a cancer genome.


Subject(s)
Genes, p53/genetics , Genetic Predisposition to Disease , Leukemia, Myeloid, Acute/genetics , Sequence Analysis, DNA , Sequence Deletion , Adult , Age of Onset , Breast Neoplasms/therapy , Cystadenocarcinoma, Serous/therapy , DNA, Neoplasm/genetics , Female , Genome, Human/genetics , Humans , Leukemia, Myeloid, Acute/etiology , Ovarian Neoplasms/therapy , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL