Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Eur J Immunol ; 51(11): 2568-2575, 2021 11.
Article in English | MEDLINE | ID: mdl-34347289

ABSTRACT

Type 1 innate lymphoid cells (ILC1) are tissue-resident lymphocytes that provide early protection against bacterial and viral infections. Discrete transcriptional states of ILC1 have been identified in homeostatic and pathological contexts. However, whether these states delineate ILC1 with different functional properties is not completely understood. Here, we show that liver ILC1 are heterogeneous for the expression of distinct effector molecules and surface receptors, including granzyme A (GzmA) and CD160, in mice. ILC1 expressing high levels of GzmA are enriched in the liver of adult mice, and represent the main hepatic ILC1 population at birth. However, the heterogeneity of GzmA and CD160 expression in hepatic ILC1 begins perinatally and increases with age. GzmA+ ILC1 differ from NK cells for the limited homeostatic requirements of JAK/STAT signals and the transcription factor Nfil3. Moreover, by employing Rorc(γt)-fate map (fm) reporter mice, we established that ILC3-ILC1 plasticity contributes to delineate the heterogeneity of liver ILC1, with RORγt-fm+ cells skewed toward a GzmA- CD160+ phenotype. Finally, we showed that ILC1 defined by the expression of GzmA and CD160 are characterized by graded cytotoxic potential and ability to produce IFN-γ. In conclusion, our findings help deconvoluting ILC1 heterogeneity and provide evidence for functional diversification of liver ILC1.


Subject(s)
Liver/cytology , Liver/immunology , Lymphocyte Subsets/cytology , Lymphocytes/cytology , Animals , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism , Granzymes/metabolism , Immunity, Innate/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , Receptors, Immunologic/metabolism
2.
J Immunol ; 197(10): 4127-4136, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27798146

ABSTRACT

Many NK cells express inhibitory receptors that bind self-MHC class I (MHC I) molecules and prevent killing of self-cells, while enabling killing of MHC I-deficient cells. But tolerance also occurs for NK cells that lack inhibitory receptors for self-MHC I, and for all NK cells in MHC I-deficient animals. In both cases, NK cells are unresponsive to MHC I-deficient cells and hyporesponsive when stimulated through activating receptors, suggesting that hyporesponsiveness is responsible for self-tolerance. We generated irradiation chimeras, or carried out adoptive transfers, with wild-type (WT) and/or MHC I-deficient hematopoietic cells in WT or MHC I-deficient C57BL/6 host mice. Unexpectedly, in WT hosts, donor MHC I-deficient hematopoietic cells failed to induce hyporesponsiveness to activating receptor stimulation, but did induce tolerance to MHC I-deficient grafts. Therefore, these two properties of NK cells are separable. Both tolerance and hyporesponsiveness occurred when the host was MHC I deficient. Interestingly, infections of mice or exposure to inflammatory cytokines reversed the tolerance of NK cells that was induced by MHC I-deficient hematopoietic cells, but not the tolerance induced by MHC I-deficient nonhematopoietic cells. These data have implications for successful bone marrow transplantation, and suggest that tolerance induced by hematopoietic cells versus nonhematopoietic cells may be imposed by distinct mechanisms.


Subject(s)
Immune Tolerance , Killer Cells, Natural/immunology , Self Tolerance , Adoptive Transfer , Animals , Bone Marrow Transplantation , Cytokines , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/classification , Killer Cells, Natural/physiology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Radiation Chimera
3.
Semin Immunol ; 26(2): 138-44, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24629893

ABSTRACT

Natural killer (NK) cells represent a first line of defense against pathogens and tumor cells. The activation of NK cells is regulated by the integration of signals deriving from activating and inhibitory receptors expressed on their surface. However, different NK cells respond differently to the same stimulus, be it target cells or agents that crosslink activating receptors. The processes that determine the level of NK cell responsiveness have been referred to collectively as NK cell education. NK cell education plays an important role in steady state conditions, where potentially auto-reactive NK cells are rendered tolerant to the surrounding environment. According to the "tuning" concept, the responsiveness of each NK cell is quantitatively adjusted to ensure self tolerance while at the same time ensuring useful reactivity against potential threats. MHC-specific inhibitory receptors displayed by NK cells play a major role in tuning NK cell responsiveness, but recent studies indicate that signaling from activating receptors is also important, suggesting that the critical determinant is an integrated signal from both types of receptors. An important and still unresolved question is whether NK cell education involves interactions with a specific cell population in the environment. Whether hematopoietic and/or non-hematopoietic cells play a role is still under debate. Recent results demonstrated that NK cell tuning exhibits plasticity in steady state conditions, meaning that it can be re-set if the MHC environment changes. Other evidence suggests, however, that inflammatory conditions accompanying infections may favor high responsiveness, indicating that inflammatory agents can over-ride the natural tendency of NK cells to adjust to the steady state environment. These findings raise many questions such as whether viruses and tumor cells manipulate NK cell responsiveness to evade immune-recognition. As knowledge of the underlying processes grows, the possibility of modulating NK cell responsiveness for therapeutic purposes is becoming increasingly attractive, and is now under serious investigation in clinical studies.


Subject(s)
Killer Cells, Natural/immunology , Self Tolerance/immunology , Animals , Cytotoxicity, Immunologic , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/metabolism
4.
PLoS Pathog ; 9(11): e1003748, 2013.
Article in English | MEDLINE | ID: mdl-24244169

ABSTRACT

Activation-induced cytidine deaminase (AID) is specifically induced in germinal center B cells to carry out somatic hypermutation and class-switch recombination, two processes responsible for antibody diversification. Because of its mutagenic potential, AID expression and activity are tightly regulated to minimize unwanted DNA damage. Surprisingly, AID expression has been observed ectopically during pathogenic infections. However, the function of AID outside of the germinal centers remains largely uncharacterized. In this study, we demonstrate that infection of human primary naïve B cells with Kaposi's sarcoma-associated herpesvirus (KSHV) rapidly induces AID expression in a cell intrinsic manner. We find that infected cells are marked for elimination by Natural Killer cells through upregulation of NKG2D ligands via the DNA damage pathway, a pathway triggered by AID. Moreover, without having a measurable effect on KSHV latency, AID impinges directly on the viral fitness by inhibiting lytic reactivation and reducing infectivity of KSHV virions. Importantly, we uncover two KSHV-encoded microRNAs that directly regulate AID abundance, further reinforcing the role for AID in the antiviral response. Together our findings reveal additional functions for AID in innate immune defense against KSHV with implications for a broader involvement in innate immunity to other pathogens.


Subject(s)
B-Lymphocytes/immunology , Cytidine Deaminase/immunology , Gene Expression Regulation, Enzymologic/immunology , Herpesvirus 8, Human/physiology , Immunity, Innate/physiology , Virus Latency/immunology , B-Lymphocytes/enzymology , Cells, Cultured , Cytidine Deaminase/biosynthesis , Female , Germinal Center/enzymology , Germinal Center/immunology , Humans , Killer Cells, Natural/enzymology , Killer Cells, Natural/immunology , Male , NK Cell Lectin-Like Receptor Subfamily K/biosynthesis , NK Cell Lectin-Like Receptor Subfamily K/immunology
5.
Blood ; 121(25): 5025-33, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23649470

ABSTRACT

The immunoreceptors NKG2D and NKp46 are known for their capacity to activate natural killer (NK) cell cytotoxicity and secretory responses in the contexts of tumors and infections, yet their roles in NK cell education remain unclear. Here, we provide the first characterization of mice deficient for both NKG2D and NKp46 receptors to address the relevance of their concomitant absence during NK cell development and function. Our findings reveal that NK cells develop normally in double-mutant (DKO) mice. Mice lacking NKG2D but not NKp46 showed subtle differences in the percentages of NK cells expressing inhibitory Ly49 receptors and the adhesion molecule DNAM-1. A slightly increased percentage of terminally differentiated NK cells and functional response to in vitro stimuli was observed in some experiments. These alterations were modest and did not affect NK cell function in vivo in response to mouse cytomegalovirus infection. NKp46 deficiency alone, or in combination with NKG2D deficiency, had no effect on frequency or function of NK cells.


Subject(s)
Antigens, Ly/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Natural Cytotoxicity Triggering Receptor 1/immunology , Animals , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , NK Cell Lectin-Like Receptor Subfamily K/deficiency , Natural Cytotoxicity Triggering Receptor 1/deficiency
6.
J Extracell Biol ; 3(7): e166, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39022723

ABSTRACT

Natural killer cell-derived extracellular vesicles (NK-EVs) are candidate biotherapeutics against various cancers. However, standardised potency assays are necessary for a reliable assessment of NK-EVs' cytotoxicity. This study aims to thoroughly evaluate a highly sensitive resazurin phenoxazine-based cell viability potency assay (measurement of the cellular redox metabolism) for quantifying the cytotoxicity of NK-EVs against leukaemia K562 cells (suspension model) and breast cancer MDA-MB-231 cells (adherent model) in vitro. The assay was evaluated based on common analytical parameters setforth by regulatory guidelines, including specificity, selectivity,accuracy, precision, linearity, range and stability. Our results revealed that this resazurin-based cell viability potency assay reliably and reproducibly measured a dose-response of NK-EVs' cytotoxic activity against both cancer models. The assay showed precision with 5% and 20% variation for intra-run and inter-run variability. The assay signal showed specificity and selectivity of NK-EVs against cancer target cells, as evidenced by the diminished viability of cancer cells following a 5-hour treatment with NK-EVs, without any detectable interference or background. The linearity analysis of target cancer cells revealed strong linearity for densities of 5000 K562 and 1000 MDA-MB-231 cells per test with a consistent range. Importantly, NK-EVs' dose-response for cytotoxicity showed a strong correlation (|ρ| ∼ 0.8) with the levels of known cytotoxic factors associated with the NK-EVs' corona (FasL, GNLY, GzmB, PFN and IFN-γ), thereby validating the accuracy of the assay. The assay also distinguished cytotoxicity changes in degraded NK-EVs, indicating the ability of the assay to detect the potential loss of sample integrity. Compared to other commonly reported bioassays (i.e., flow cytometry, cell counting, lactate dehydrogenase release assay, DNA-binding reporter assay and confluence assay), our results support this highly sensitive resazurin-based viability potency assay as a high-throughput and quantitative method for assessing NK-EVs' cytotoxicity against both suspension and adherent cancer models for evaluating NK-EVs' biotherapeutics.

7.
Sci Rep ; 14(1): 787, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191799

ABSTRACT

The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.


Subject(s)
Fibrinogen , Melanoma , Ovarian Neoplasms , Animals , Female , Humans , Mice , Antigen-Presenting Cells , Carcinoma, Ovarian Epithelial , Melanoma/genetics , Melanoma/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Tumor Microenvironment
8.
Nat Cancer ; 5(3): 463-480, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351181

ABSTRACT

Cancer stem cells (CSCs), functionally characterized by self-renewal and tumor-initiating activity, contribute to decreased tumor immunogenicity, while fostering tumor growth and metastasis. Targeting G9a histone methyltransferase (HMTase) effectively blocks CSC functions in colorectal tumors by altering pluripotent-like molecular networks; however, existing molecules directly targeting G9a HMTase activity failed to reach clinical stages due to safety concerns. Using a stem cell-based phenotypic drug-screening pipeline, we identified the dopamine transporter (DAT) antagonist vanoxerine, a compound with previously demonstrated clinical safety, as a cancer-specific downregulator of G9a expression. Here we show that gene silencing and chemical antagonism of DAT impede colorectal CSC functions by repressing G9a expression. Antagonizing DAT also enhanced tumor lymphocytic infiltration by activating endogenous transposable elements and type-I interferon response. Our study unveils the direct implication of the DAT-G9a axis in the maintenance of CSC populations and an approach to improve antitumor immune response in colon tumors.


Subject(s)
Colonic Neoplasms , Histone-Lysine N-Methyltransferase , Piperazines , Humans , Histone-Lysine N-Methyltransferase/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/pharmacology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
9.
Front Immunol ; 15: 1366197, 2024.
Article in English | MEDLINE | ID: mdl-38601156

ABSTRACT

Introduction: Chemotherapy remains the mainstay treatment for triple-negative breast cancer (TNBC) due to the lack of specific targets. Given a modest response of immune checkpoint inhibitors in TNBC patients, improving immunotherapy is an urgent and crucial task in this field. CD73 has emerged as a novel immunotherapeutic target, given its elevated expression on tumor, stromal, and specific immune cells, and its established role in inhibiting anti-cancer immunity. CD73-generated adenosine suppresses immunity by attenuating tumor-infiltrating T- and NK-cell activation, while amplifying regulatory T cell activation. Chemotherapy often leads to increased CD73 expression and activity, further suppressing anti-tumor immunity. While debulking the tumor mass, chemotherapy also enriches heterogenous cancer stem cells (CSC), potentially leading to tumor relapse. Therefore, drugs targeting both CD73, and CSCs hold promise for enhancing chemotherapy efficacy, overcoming treatment resistance, and improving clinical outcomes. However, safe and effective inhibitors of CD73 have not been developed as of now. Methods: We used in silico docking to screen compounds that may be repurposed for inhibiting CD73. The efficacy of these compounds was investigated through flow cytometry, RT-qPCR, CD73 activity, cell viability, tumorsphere formation, and other in vitro functional assays. For assessment of clinical translatability, TNBC patient-derived xenograft organotypic cultures were utilized. We also employed the ovalbumin-expressing AT3 TNBC mouse model to evaluate tumor-specific lymphocyte responses. Results: We identified quercetin and luteolin, currently used as over-the-counter supplements, to have high in silico complementarity with CD73. When quercetin and luteolin were combined with the chemotherapeutic paclitaxel in a triple-drug regimen, we found an effective downregulation in paclitaxel-enhanced CD73 and CSC-promoting pathways YAP and Wnt. We found that CD73 expression was required for the maintenance of CD44highCD24low CSCs, and co-targeting CD73, YAP, and Wnt effectively suppressed the growth of human TNBC cell lines and patient-derived xenograft organotypic cultures. Furthermore, triple-drug combination inhibited paclitaxel-enriched CSCs and simultaneously improved lymphocyte infiltration in syngeneic TNBC mouse tumors. Discussion: Conclusively, our findings elucidate the significance of CSCs in impairing anti-tumor immunity. The high efficacy of our triple-drug regimen in clinically relevant platforms not only underscores the importance for further mechanistic investigations but also paves the way for potential development of new, safe, and cost-effective therapeutic strategies for TNBC.


Subject(s)
CD47 Antigen , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Flavonoids/pharmacology , Luteolin/metabolism , Neoplastic Stem Cells/metabolism , Paclitaxel/therapeutic use , Quercetin/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , CD47 Antigen/antagonists & inhibitors
10.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38869480

ABSTRACT

While conventional wisdom initially postulated that PD-L1 serves as the inert ligand for PD-1, an emerging body of literature suggests that PD-L1 has cell-intrinsic functions in immune and cancer cells. In line with these studies, here we show that engagement of PD-L1 via cellular ligands or agonistic antibodies, including those used in the clinic, potently inhibits the type I interferon pathway in cancer cells. Hampered type I interferon responses in PD-L1-expressing cancer cells resulted in enhanced efficacy of oncolytic viruses in vitro and in vivo. Consistently, PD-L1 expression marked tumor explants from cancer patients that were best infected by oncolytic viruses. Mechanistically, PD-L1 promoted a metabolic shift characterized by enhanced glycolysis rate that resulted in increased lactate production. In turn, lactate inhibited type I IFN responses. In addition to adding mechanistic insight into PD-L1 intrinsic function, our results will also help guide the numerous ongoing efforts to combine PD-L1 antibodies with oncolytic virotherapy in clinical trials.


Subject(s)
B7-H1 Antigen , Interferon Type I , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Female , Humans , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/genetics , Cell Line, Tumor , Glycolysis , Interferon Type I/metabolism , Interferon Type I/immunology , Lactic Acid/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Signal Transduction , Male
11.
Blood ; 117(18): 4778-86, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21406724

ABSTRACT

An important role for natural killer (NK) cells in the regulation of T-cell responses is emerging, although the receptor pairs regulating the NK-T-cell interaction have still not been identified. We found that superantigen-stimulated T cells express Nectin-2 (CD112) and poliovirus receptor (PVR; CD155), the ligands of the activating NK receptor DNAX accessory molecule-1 (DNAM-1; CD226). Interestingly, only PVR was present at the T cell surface, particularly on cells in the S and G(2)/M phases of the cell cycle. The up-regulation of PVR expression involves DNA-damage response (DDR)-dependent pathways, because we found that pharmacologic inhibition of ATM and ATR kinases reduced PVR expression and that PVR was almost exclusively induced on cells expressing the DDR marker γH2AX. Oxidative stress contributed to DDR activation, and our results showed impaired PVR levels in the presence of the reactive oxygen species (ROS) scavenger N-acetyl-cysteine (NAC), being monocytes the main ROS source needed for optimal PVR expression on activated T cells. Interestingly, in accordance with ligand expression, NK cells lysed allogeneic proliferating more efficiently than nonproliferating T lymphocytes, with a mechanism requiring the cooperation between DNAM-1 and NKG2D. These results could contribute to unraveling the role of NK cells in the down-regulation of T-cell responses in physiologic and pathologic processes such as autoimmunity or GVHD.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/metabolism , DNA Damage , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Ataxia Telangiectasia Mutated Proteins , Base Sequence , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Cytotoxicity, Immunologic , DNA Primers/genetics , DNA-Binding Proteins/metabolism , Humans , In Vitro Techniques , Lipopolysaccharide Receptors/metabolism , Lymphocyte Activation , Lymphocyte Cooperation , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nectins , Oxidative Stress , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Receptors, Virus/biosynthesis , Receptors, Virus/genetics , Superantigens/administration & dosage , T-Lymphocytes/cytology , Tumor Suppressor Proteins/metabolism , Up-Regulation
12.
Front Immunol ; 14: 1166038, 2023.
Article in English | MEDLINE | ID: mdl-37205115

ABSTRACT

Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy have revolutionized treatment for several cancer types over the past decade. Despite this success, obstacles including the high price tag, manufacturing complexity, and treatment-associated toxicities have limited the broad application of this therapy. Chimeric antigen receptor engineered natural killer cell (CAR-NK) therapy offers a potential opportunity for a simpler and more affordable "off-the-shelf" treatment, likely with fewer toxicities. Unlike CAR-T, CAR-NK therapies are still in early development, with few clinical trials yet reported. Given the challenges experienced through the development of CAR-T therapies, this review explores what lessons we can apply to build better CAR-NK therapies. In particular, we explore the importance of optimizing the immunochemical properties of the CAR construct, understanding factors leading to cell product persistence, enhancing trafficking of transferred cells to the tumor, ensuring the metabolic fitness of the transferred product, and strategies to avoid tumor escape through antigen loss. We also review trogocytosis, an important emerging challenge that likely equally applies to CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already being addressed in CAR-NK therapies, and what future directions may be possible.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes , Killer Cells, Natural
13.
Cells ; 13(1)2023 12 29.
Article in English | MEDLINE | ID: mdl-38201278

ABSTRACT

Targeted therapy resistance frequently develops in melanoma due to intratumor heterogeneity and epigenetic reprogramming. This also typically induces cross-resistance to immunotherapies. Whether this includes additional modes of therapy has not been fully assessed. We show that co-treatments of MAPKi with VSV-based oncolytics do not function in a synergistic fashion; rather, the MAPKis block infection. Melanoma resistance to vemurafenib further perturbs the cells' ability to be infected by oncolytic viruses. Resistance to vemurafenib can be induced by the loss of SOX10, a common proliferative marker in melanoma. The loss of SOX10 promotes a cross-resistant state by further inhibiting viral infection and replication. Analysis of RNA-seq datasets revealed an upregulation of interferon-stimulated genes (ISGs) in SOX10 knockout populations and targeted therapy-resistant cells. Interestingly, the induction of ISGs appears to be independent of type I IFN production. Overall, our data suggest that the pathway mediating oncolytic resistance is due to the loss of SOX10 during acquired drug resistance in melanoma.


Subject(s)
Melanoma , Oncolytic Viruses , RNA Viruses , Humans , Oncolytic Viruses/genetics , Melanoma/therapy , Vemurafenib , Epigenomics , Interferons , RNA
14.
Nat Commun ; 14(1): 3035, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37236967

ABSTRACT

The large coding potential of vaccinia virus (VV) vectors is a defining feature. However, limited regulatory switches are available to control viral replication as well as timing and dosing of transgene expression in order to facilitate safe and efficacious payload delivery. Herein, we adapt drug-controlled gene switches to enable control of virally encoded transgene expression, including systems controlled by the FDA-approved rapamycin and doxycycline. Using ribosome profiling to characterize viral promoter strength, we rationally design fusions of the operator element of different drug-inducible systems with VV promoters to produce synthetic promoters yielding robust inducible expression with undetectable baseline levels. We also generate chimeric synthetic promoters facilitating additional regulatory layers for VV-encoded synthetic transgene networks. The switches are applied to enable inducible expression of fusogenic proteins, dose-controlled delivery of toxic cytokines, and chemical regulation of VV replication. This toolbox enables the precise modulation of transgene circuitry in VV-vectored oncolytic virus design.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Genetic Vectors/genetics , Vaccinia virus/genetics , Oncolytic Viruses/genetics , Promoter Regions, Genetic/genetics
15.
Cancers (Basel) ; 14(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35740500

ABSTRACT

Due to their crucial role in tumor immunity, NK cells have quickly became a prime target for immunotherapies, with the adoptive transfer of NK cells and the use of NK cell engagers quickly moving to the clinical stage. On the other hand, only a few studies have focused on small molecule drugs capable of unleashing NK cells against cancer. In this context, repurposing small molecules is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we developed a new platform to screen small molecule compounds based on a high-throughput luciferase-release cytotoxicity assay. We tested 1200 FDA approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cells' cytotoxic potential. We found that the antibiotic colistin sulfate increased the cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.

16.
iScience ; 25(12): 105524, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36437876

ABSTRACT

SOX10 is a key regulator of melanoma progression and promotes a melanocytic/differentiated state. Here we identified melanoma cell lines lacking SOX10 expression which retain their in vivo growth capabilities. More importantly, we find that SOX10 can regulate T-cell infiltration in melanoma while also decreasing common cancer stem cell (CSC) properties. We show that SOX10 regulates CEACAM1, a surface protein with immunomodulatory properties. SOX10 directly binds to a distal CEACAM1 promoter region approximately 3-4kbps from the CEACAM1 transcriptional start site. Furthermore, we show that a SOX10-CEACAM1 axis can suppress CD8+ T-cell infiltration as well as reduce CSC pool within tumors, leading to reduced tumor growth. Overall, these results identify SOX10 as a direct regulator of CEACAM1, and uncover both a pro- and anti-tumorigenic roles for SOX10 in melanoma.

17.
Sci Adv ; 8(15): eabj3286, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35417234

ABSTRACT

Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.


Subject(s)
Leukemia , Neoplasms , Animals , CD8-Positive T-Lymphocytes , Humans , Killer Cells, Natural , Leukemia/metabolism , Mice , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism
18.
Blood ; 113(13): 2955-64, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19124832

ABSTRACT

NKG2D is an activating receptor expressed on CD8(+)alphabeta(+) T cells, gammadelta(+) T cells, natural killer (NK) cells, and some CD4(+) T cells. For a long time, the interaction of NKG2D with its ligands (NKG2DLs) MICA, MICB, and ULBP1-3 has been considered a mechanism for recognition and elimination of tumor, infected, or otherwise "stressed" cells. However, a new role for NKG2D as an immunoregulatory receptor is emerging. Here, we show that NKG2D is strongly down-modulated on antigen-activated CD8(+) T cells but only if CD4(+) T cells are present. Down-modulation was caused by soluble factors produced by CD4(+) T cells, and in particular soluble NKG2DLs were found in the supernatants of antigen-activated T-cell cultures. MICB was the ligand released at higher levels when CD4(+) T cells were present in the cell cultures, suggesting that it could be the major player of NKG2D down-modulation. CD8(+) T cells expressing low levels of NKG2D had impaired effector functions, as evaluated by proliferation, cytokine production, and cytotoxicity assays after combined triggering of NKG2D and TCR-CD3 complex. These findings show that activated CD4(+) T cells expressing NKG2DLs can efficiently prevent NKG2D-mediated CD8(+) T-cell functions, and suggest that the NKG2D/NKG2DL interaction can regulate immune responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Ligands , Lymphocyte Activation/physiology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , CD3 Complex/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/immunology , Enterotoxins/pharmacology , Histocompatibility Antigens Class I/metabolism , Humans , Immunity, Innate/physiology , Interferon-gamma/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology
19.
J Immunother Cancer ; 9(2)2021 02.
Article in English | MEDLINE | ID: mdl-33526607

ABSTRACT

Sarcomas are a rare malignancy of mesenchymal tissues, comprizing a plethora of unique subtypes, with more than 60 types. The sheer heterogeneity of disease phenotype makes this a particularly difficult cancer to treat. Radiotherapy, chemotherapy and surgery have been employed for over three decades and, although effective in early disease (stages I-II), in later stages, where metastatic tumors are present, these treatments are less effective. Given the spectacular results obtained by cancer immunotherapy in a variety of solid cancers and leukemias, there is now a great interest in appliying this new realm of therapy for sarcomas. The widespread use of immunotherapy for sarcoma relies on immuno-profiling of subtypes, immunomonitoring for prognosis, preclinical studies and insight into the safety profile of these novel therapies. Herein, we discuss preclinical and clinical data highlighting how immunotherapy is being used in soft tissue sarcoma and bone sarcomas.


Subject(s)
Immunotherapy/methods , Osteosarcoma/drug therapy , Sarcoma/drug therapy , Clinical Trials as Topic , Humans , Neoplasm Staging , Osteosarcoma/immunology , Prognosis , Sarcoma/immunology , Sarcoma/pathology , Treatment Outcome
20.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118917, 2021 02.
Article in English | MEDLINE | ID: mdl-33259860

ABSTRACT

Duchenne's muscular dystrophy (DMD) is a severe muscle wasting disorder characterized by the loss of dystrophin expression, muscle necrosis, inflammation and fibrosis. Ongoing muscle regeneration is impaired by persistent cytokine stress, further decreasing muscle function. Patients with DMD rarely survive beyond their early 20s, with cardiac and respiratory dysfunction being the primary cause of death. Despite an increase in our understanding of disease progression as well as promising preclinical animal models for therapeutic intervention, treatment options for muscular dystrophy remain limited and novel therapeutic targets are required. Many reports suggest that the TGFß signalling pathway is activated in dystrophic muscle and contributes to the pathology of DMD in part by impairing the differentiation of myoblasts into mature myofibers. Here, we show that in vitro knockdown of the Ste20-like kinase, SLK, can partially restore myoblast differentiation downstream of TGFß in a Smad2/3 independent manner. In an mdx model, we demonstrate that SLK is expressed at high levels in regenerating myofibers. Muscle-specific deletion of SLK reduced leukocyte infiltration, increased myogenin and utrophin expression and enhanced differentiation. This was accompanied by resistance to eccentric contraction-induced injury in slow fiber type-enriched soleus muscles. Finally, we found that these effects were partially dependent on the upregulation of p38 signalling. Collectively, these results demonstrate that SLK downregulation can restore some aspects of disease progression in DMD.


Subject(s)
Gene Knockout Techniques , MAP Kinase Signaling System/genetics , Muscle Development/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Protein Serine-Threonine Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Dogs , Mice , Mice, Inbred mdx , Mice, Knockout , Muscular Dystrophy, Duchenne/pathology , Myoblasts/metabolism , Myogenin/metabolism , Protein Serine-Threonine Kinases/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL