Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Vet Med Sci ; 79(9): 1540-1544, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28579596

ABSTRACT

Adipose-derived stem cells (ADSCs) are abundant and readily obtained, and have been studied for their clinical applicability in regenerative medicine. Some surface antigens have been identified as markers of different ADSC subpopulations in mice and humans. However, it is unclear whether functionally distinct subpopulations exist in dogs. To address this issue, we evaluated aldehyde dehydrogenase (ALDH) activity-a widely used stem cell marker in mice and humans-by flow cytometry. Approximately 20% of bulk ADSCs showed high ALDH activity. Compared to cells with low activity (ALDHLo), the high-activity (ALDHHi) subpopulation exhibited a higher capacity for adipogenic and osteogenic differentiation. This is the first report of distinct ADSC subpopulations in dogs that differ in terms of adipogenic and osteogenic differentiation potential.


Subject(s)
Adipogenesis , Adipose Tissue/cytology , Aldehyde Dehydrogenase/metabolism , Osteogenesis , Stem Cells/enzymology , Adipose Tissue/enzymology , Animals , Cells, Cultured , Dogs , Female , Male , Stem Cells/cytology
2.
World J Stem Cells ; 9(10): 179-186, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29104736

ABSTRACT

AIM: To identify and characterize functionally distinct subpopulation of adipose-derived stem cells (ADSCs). METHODS: ADSCs cultured from mouse subcutaneous adipose tissue were sorted fluorescence-activated cell sorter based on aldehyde dehydrogenase (ALDH) activity, a widely used stem cell marker. Differentiation potentials were analyzed by utilizing immunocytofluorescece and its quantitative analysis. RESULTS: Approximately 15% of bulk ADSCs showed high ALDH activity in flow cytometric analysis. Although significant difference was not seen in proliferation capacity, the adipogenic and osteogenic differentiation capacity was higher in ALDHHi subpopulations than in ALDHLo. Gene set enrichment analysis revealed that ribosome-related gene sets were enriched in the ALDHHi subpopulation. CONCLUSION: High ALDH activity is a useful marker for identifying functionally different subpopulations in murine ADSCs. Additionally, we suggested the importance of ribosome for differentiation of ADSCs by gene set enrichment analysis.

3.
J Vet Med ; 2017: 5701016, 2017.
Article in English | MEDLINE | ID: mdl-28900631

ABSTRACT

This study aimed to demonstrate single-cell phosphospecific flow cytometric analysis of canine and murine adipose-derived stem/stromal cells (ADSCs). ADSCs were obtained from clinically healthy laboratory beagles and C57BL/6 mice. Cell differentiation into adipocytes, osteocytes, and chondrocytes was observed for the cultured canine ADSCs (cADSCs) and murine ADSCs (mADSCs) to determine their multipotency. We also performed single-cell phosphospecific flow cytometric analysis related to cell differentiation and stemness. Cultured cADSCs and mADSCs exhibited the potential to differentiate into adipocytes, osteocytes, and chondrocytes. In addition, single-cell phosphospecific flow cytometric analysis revealed similar ß-catenin and Akt phosphorylation between mADSCs and cADSCs. On the other hand, it showed the phosphorylation of different Stat proteins. It was determined that cADSCs and mADSCs show the potential to differentiate into adipocytes, osteocytes, and chondrocytes. Furthermore, a difference in protein phosphorylation between undifferentiated cADSCs and mADSCs was identified.

4.
Biomed Rep ; 7(1): 73-78, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28685064

ABSTRACT

The majority of cases of chemotherapy for hepatocellular carcinoma (HCC) are not effective in human or veterinary medicine due to resistance against anticancer agents. In human medicine, hepatocellular carcinoma stem cells (HCSCs) were recently identified as cytokeratin 19 (CK19)-, cluster of differentiation (CD)-44-, and CD133-positive. However, there are few previous reports regarding canine HCSC (cHCSC). Additionally, to the best of our knowledge, the chemoresistance against anticancer agents of these cHCSCs has not been investigated. In the present study staining of cHCSCs was performed with rhodamine 123, a low-toxicity fluorescent dye for mitochondria, by flow cytometry. There were two subpopulations in the HCC cell line defined by their higher (RhoHi) and lower (RhoLo) fluorescence intensity of rhodamine 123. The RhoHi subpopulation demonstrated a higher Nanog gene expression, sphere-forming ability, and chemoresistance against gemcitabine. However, there was no significant difference between RhoHi and RhoLo regarding the proliferation rate and chemoresistance against mitoxantrone and doxorubicin. The present results indicate that the expression of rhodamine 123 identifies different stem cell subpopulations in a canine HCC cell line.

SELECTION OF CITATIONS
SEARCH DETAIL