Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Biol Res ; 57(1): 29, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760841

ABSTRACT

BACKGROUND: We recently reported that upregulation of Musashi 2 (MSI2) protein in the rare neuromuscular disease myotonic dystrophy type 1 contributes to the hyperactivation of the muscle catabolic processes autophagy and UPS through a reduction in miR-7 levels. Because oleic acid (OA) is a known allosteric regulator of MSI2 activity in the biogenesis of miR-7, here we sought to evaluate endogenous levels of this fatty acid and its therapeutic potential in rescuing cell differentiation phenotypes in vitro. In this work, four muscle cell lines derived from DM1 patients were treated with OA for 24 h, and autophagy and muscle differentiation parameters were analyzed. RESULTS: We demonstrate a reduction of OA levels in different cell models of the disease. OA supplementation rescued disease-related phenotypes such as fusion index, myotube diameter, and repressed autophagy. This involved inhibiting MSI2 regulation of direct molecular target miR-7 since OA isoschizomer, elaidic acid (EA) could not cause the same rescues. Reduction of OA levels seems to stem from impaired biogenesis since levels of the enzyme stearoyl-CoA desaturase 1 (SCD1), responsible for converting stearic acid to oleic acid, are decreased in DM1 and correlate with OA amounts. CONCLUSIONS: For the first time in DM1, we describe a fatty acid metabolism impairment that originated, at least in part, from a decrease in SCD1. Because OA allosterically inhibits MSI2 binding to molecular targets, reduced OA levels synergize with the overexpression of MSI2 and contribute to the MSI2 > miR-7 > autophagy axis that we proposed to explain the muscle atrophy phenotype.


Subject(s)
Myotonic Dystrophy , Oleic Acid , Oleic Acid/pharmacology , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/metabolism , Humans , Cell Differentiation/drug effects , MicroRNAs/metabolism , Autophagy/drug effects , Cell Line , RNA-Binding Proteins/metabolism
2.
Cell Biol Toxicol ; 39(3): 751-770, 2023 06.
Article in English | MEDLINE | ID: mdl-34448959

ABSTRACT

Autophagy is a conserved intracellular catabolic pathway that removes cytoplasmic components to contribute to neuronal homeostasis. Accumulating evidence has increasingly shown that the induction of autophagy improves neuronal health and extends longevity in several animal models. Therefore, there is a great interest in the identification of effective autophagy enhancers with potential nutraceutical or pharmaceutical properties to ameliorate age-related diseases, such as neurodegenerative disorders, and/or promote longevity. Queen bee acid (QBA, 10-hydroxy-2-decenoic acid) is the major fatty acid component of, and is found exclusively in, royal jelly, which has beneficial properties for human health. It is reported that QBA has antitumor, anti-inflammatory, and antibacterial activities and promotes neurogenesis and neuronal health; however, the mechanism by which QBA exerts these effects has not been fully elucidated. The present study investigated the role of the autophagic process in the protective effect of QBA. We found that QBA is a novel autophagy inducer that triggers autophagy in various neuronal cell lines and mouse and fly models. The beclin-1 (BECN1) and mTOR pathways participate in the regulation of QBA-induced autophagy. Moreover, our results showed that QBA stimulates sirtuin 1 (SIRT1), which promotes autophagy by the deacetylation of critical ATG proteins. Finally, QBA-mediated autophagy promotes neuroprotection in Parkinson's disease in vitro and in a mouse model and extends the lifespan of Drosophila melanogaster. This study provides detailed evidences showing that autophagy induction plays a critical role in the beneficial health effects of QBA.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Mice , Humans , Bees , Animals , Neuroprotection , Drosophila melanogaster , Autophagy , Cell Line , Neuroprotective Agents/pharmacology
3.
Cell Mol Life Sci ; 79(8): 441, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35864358

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disease resulting in the loss of α-motoneurons followed by muscle atrophy. It is caused by knock-out mutations in the survival of motor neuron 1 (SMN1) gene, which has an unaffected, but due to preferential exon 7 skipping, only partially functional human-specific SMN2 copy. We previously described a Drosophila-based screening of FDA-approved drugs that led us to discover moxifloxacin. We showed its positive effect on the SMN2 exon 7 splicing in SMA patient-derived skin cells and its ability to increase the SMN protein level. Here, we focus on moxifloxacin's therapeutic potential in additional SMA cellular and animal models. We demonstrate that moxifloxacin rescues the SMA-related molecular and phenotypical defects in muscle cells and motoneurons by improving the SMN2 splicing. The consequent increase of SMN levels was higher than in case of risdiplam, a potent exon 7 splicing modifier, and exceeded the threshold necessary for a survival improvement. We also demonstrate that daily subcutaneous injections of moxifloxacin in a severe SMA murine model reduces its characteristic neuroinflammation and increases the SMN levels in various tissues, leading to improved motor skills and extended lifespan. We show that moxifloxacin, originally used as an antibiotic, can be potentially repositioned for the SMA treatment.


Subject(s)
Muscular Atrophy, Spinal , Animals , Disease Models, Animal , Exons/genetics , Humans , Mice , Moxifloxacin/pharmacology , Moxifloxacin/therapeutic use , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Phenotype , Survival of Motor Neuron 1 Protein/genetics
4.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372969

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a complex rare disorder characterized by progressive muscle dysfunction, involving weakness, myotonia, and wasting, but also exhibiting additional clinical signs in multiple organs and systems. Central dysregulation, caused by an expansion of a CTG trinucleotide repeat in the DMPK gene's 3' UTR, has led to exploring various therapeutic approaches in recent years, a few of which are currently under clinical trial. However, no effective disease-modifying treatments are available yet. In this study, we demonstrate that treatments with boldine, a natural alkaloid identified in a large-scale Drosophila-based pharmacological screening, was able to modify disease phenotypes in several DM1 models. The most significant effects include consistent reduction in nuclear RNA foci, a dynamic molecular hallmark of the disease, and noteworthy anti-myotonic activity. These results position boldine as an attractive new candidate for therapy development in DM1.


Subject(s)
Myotonic Dystrophy , Animals , Mice , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Drosophila/genetics , Phenotype , Cell Line , Trinucleotide Repeat Expansion
5.
FASEB J ; 35(10): e21914, 2021 10.
Article in English | MEDLINE | ID: mdl-34547132

ABSTRACT

Limb-girdle muscular dystrophy D2 (LGMDD2) is an ultrarare autosomal dominant myopathy caused by mutation of the normal stop codon of the TNPO3 nuclear importin. The mutant protein carries a 15 amino acid C-terminal extension associated with pathogenicity. Here we report the first animal model of the disease by expressing the human mutant TNPO3 gene in Drosophila musculature or motor neurons and concomitantly silencing the endogenous expression of the fly protein ortholog. A similar genotype expressing wildtype TNPO3 served as a control. Phenotypes characterization revealed that mutant TNPO3 expression targeted at muscles or motor neurons caused LGMDD2-like phenotypes such as muscle degeneration and atrophy, and reduced locomotor ability. Notably, LGMDD2 mutation increase TNPO3 at the transcript and protein level in the Drosophila model Upregulated muscle autophagy observed in LGMDD2 patients was also confirmed in the fly model, in which the anti-autophagic drug chloroquine was able to rescue histologic and functional phenotypes. Overall, we provide a proof of concept of autophagy as a target to treat disease phenotypes and propose a neurogenic component to explain mutant TNPO3 pathogenicity in diseased muscles.


Subject(s)
Autophagy/drug effects , Chloroquine/pharmacology , Chloroquine/therapeutic use , Disease Models, Animal , Drosophila melanogaster/drug effects , Muscular Atrophy/drug therapy , Muscular Dystrophies, Limb-Girdle/complications , Animals , Animals, Genetically Modified , Autophagy/genetics , Drosophila melanogaster/genetics , Female , Humans , Insect Hormones , Locomotion , Male , Motor Neurons/metabolism , Muscles/metabolism , Muscular Atrophy/complications , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Muscular Dystrophies, Limb-Girdle/drug therapy , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Phenotype , Survival Rate , beta Karyopherins/genetics , beta Karyopherins/metabolism
6.
Proc Natl Acad Sci U S A ; 116(50): 25203-25213, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31754023

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.


Subject(s)
Chloroquine/administration & dosage , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/metabolism , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Autophagy/drug effects , DNA-Binding Proteins/genetics , Disease Models, Animal , Drosophila , Drosophila Proteins/genetics , Female , Humans , Male , Mice , Muscles/drug effects , Muscles/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/physiopathology , Nuclear Proteins/genetics , Phenotype , RNA Splicing/drug effects , RNA-Binding Proteins/genetics
7.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163365

ABSTRACT

Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3' polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.


Subject(s)
Computational Biology/methods , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Adult , Alternative Splicing , Animals , Artificial Intelligence , Humans , Single-Cell Analysis
8.
FASEB J ; 34(2): 3021-3036, 2020 02.
Article in English | MEDLINE | ID: mdl-31909520

ABSTRACT

Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conserved Drosophila blood-brain barrier and modulating exon 7 inclusion. The model was used for the screening of 1100 drugs from the Prestwick Chemical Library, resulting in 2.45% hit rate. The most promising candidate drugs were validated in patient-derived fibroblasts where they proved to increase SMN protein levels. Among them, moxifloxacin modulated SMN2 splicing by promoting exon 7 inclusion. The recovery of SMN protein levels was confirmed by increased colocalization of nuclear gems with Cajal Bodies. Thus, a Drosophila-based drug screen allowed the discovery of an FDA-approved small molecule with the potential to become a novel therapy for SMA.


Subject(s)
Animals, Genetically Modified , Blood-Brain Barrier , Exons , Genes, Reporter , Moxifloxacin/pharmacology , Muscular Atrophy, Spinal , Alternative Splicing/drug effects , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Disease Models, Animal , Drosophila melanogaster , Drug Evaluation, Preclinical , Humans , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
9.
Int J Mol Sci ; 20(22)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717488

ABSTRACT

Myotonic dystrophy involves two types of chronically debilitating rare neuromuscular diseases: type 1 (DM1) and type 2 (DM2). Both share similarities in molecular cause, clinical signs, and symptoms with DM2 patients usually displaying milder phenotypes. It is well documented that key clinical symptoms in DM are associated with a strong mis-regulation of RNA metabolism observed in patient's cells. This mis-regulation is triggered by two leading DM-linked events: the sequestration of Muscleblind-like proteins (MBNL) and the mis-regulation of the CUGBP RNA-Binding Protein Elav-Like Family Member 1 (CELF1) that cause significant alterations to their important functions in RNA processing. It has been suggested that DM1 may be treatable through endogenous modulation of the expression of MBNL and CELF1 proteins. In this study, we analyzed the recent identification of the involvement of microRNA (miRNA) molecules in DM and focus on the modulation of these miRNAs to therapeutically restore normal MBNL or CELF1 function. We also discuss additional prospective miRNA targets, the use of miRNAs as disease biomarkers, and additional promising miRNA-based and miRNA-targeting drug development strategies. This review provides a unifying overview of the dispersed data on miRNA available in the context of DM.


Subject(s)
MicroRNAs/genetics , Myotonic Dystrophy/genetics , Alternative Splicing , Animals , CELF1 Protein/genetics , Drug Discovery , Gene Expression Regulation , Genetic Therapy , Humans , Myotonic Dystrophy/therapy , RNA-Binding Proteins/genetics
10.
Hum Mol Genet ; 22(4): 704-16, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23139243

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by the expansion of CTG repeats in the 3' untranslated region of the DMPK gene. Several missplicing events and transcriptional alterations have been described in DM1 patients. A large number of these defects have been reproduced in animal models expressing CTG repeats alone. Recent studies have also reported miRNA dysregulation in DM1 patients. In this work, a Drosophila model was used to investigate miRNA transcriptome alterations in the muscle, specifically triggered by CTG expansions. Twenty miRNAs were differentially expressed in CTG-expressing flies. Of these, 19 were down-regulated, whereas 1 was up-regulated. This trend was confirmed for those miRNAs conserved between Drosophila and humans (miR-1, miR-7 and miR-10) in muscle biopsies from DM1 patients. Consistently, at least seven target transcripts of these miRNAs were up-regulated in DM1 skeletal muscles. The mechanisms involved in dysregulation of miR-7 included a reduction of its primary precursor both in CTG-expressing flies and in DM1 patients. Additionally, a regulatory role for Muscleblind (Mbl) was also suggested for miR-1 and miR-7, as these miRNAs were down-regulated in flies where Mbl had been silenced. Finally, the physiological relevance of miRNA dysregulation was demonstrated for miR-10, since over-expression of this miRNA in Drosophila extended the lifespan of CTG-expressing flies. Taken together, our results contribute to our understanding of the origin and the role of miRNA alterations in DM1.


Subject(s)
MicroRNAs/genetics , Myotonic Dystrophy/genetics , Trinucleotide Repeat Expansion , Animals , Base Sequence , Cells, Cultured , Down-Regulation , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Gene Expression , Gene Expression Regulation , Humans , Life Expectancy , Male , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Transcriptome
11.
Nature ; 457(7227): 322-6, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18971929

ABSTRACT

The nephron is the basic structural and functional unit of the vertebrate kidney. It is composed of a glomerulus, the site of ultrafiltration, and a renal tubule, along which the filtrate is modified. Although widely regarded as a vertebrate adaptation, 'nephron-like' features can be found in the excretory systems of many invertebrates, raising the possibility that components of the vertebrate excretory system were inherited from their invertebrate ancestors. Here we show that the insect nephrocyte has remarkable anatomical, molecular and functional similarity to the glomerular podocyte, a cell in the vertebrate kidney that forms the main size-selective barrier as blood is ultrafiltered to make urine. In particular, both cell types possess a specialized filtration diaphragm, known as the slit diaphragm in podocytes or the nephrocyte diaphragm in nephrocytes. We find that fly (Drosophila melanogaster) orthologues of the major constituents of the slit diaphragm, including nephrin, NEPH1 (also known as KIRREL), CD2AP, ZO-1 (TJP1) and podocin, are expressed in the nephrocyte and form a complex of interacting proteins that closely mirrors the vertebrate slit diaphragm complex. Furthermore, we find that the nephrocyte diaphragm is completely lost in flies lacking the orthologues of nephrin or NEPH1-a phenotype resembling loss of the slit diaphragm in the absence of either nephrin (as in human congenital nephrotic syndrome of the Finnish type, NPHS1) or NEPH1. These changes markedly impair filtration function in the nephrocyte. The similarities we describe between invertebrate nephrocytes and vertebrate podocytes provide evidence suggesting that the two cell types are evolutionarily related, and establish the nephrocyte as a simple model in which to study podocyte biology and podocyte-associated diseases.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Podocytes/cytology , Podocytes/physiology , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/physiology , Immunoglobulins/genetics , Immunoglobulins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Podocytes/metabolism
12.
Proc Natl Acad Sci U S A ; 108(29): 11866-71, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21730182

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by the expansion of noncoding CTG repeats in the dystrophia myotonica-protein kinase gene. Mutant transcripts form CUG hairpins that sequester RNA-binding factors into nuclear foci, including Muscleblind-like-1 protein (MBNL1), which regulate alternative splicing and gene expression. To identify molecules that target toxic CUG transcripts in vivo, we performed a positional scanning combinatorial peptide library screen using a Drosophila model of DM1. The screen identified a D-amino acid hexapeptide (ABP1) that reduced CUG foci formation and suppressed CUG-induced lethality and muscle degeneration when administered orally. Transgenic expression of natural, L-amino acid ABP1 analogues reduced CUG-induced toxicity in fly eyes and muscles. Furthermore, ABP1 reversed muscle histopathology and splicing misregulation of MBNL1 targets in DM1 model mice. In vitro, ABP1 bound to CUG hairpins and induced a switch to a single-stranded conformation. Our findings demonstrate that ABP1 shows antimyotonic dystrophy activity by targeting the core of CUG toxicity.


Subject(s)
Myotonic Dystrophy/genetics , Oligopeptides/metabolism , Protein Conformation , Protein Serine-Threonine Kinases/genetics , RNA-Binding Proteins/metabolism , Trinucleotide Repeat Expansion/genetics , Animals , DNA-Binding Proteins/metabolism , Drosophila , Drug Discovery , Mice , Muscles/metabolism , Myotonin-Protein Kinase , Oligopeptides/genetics , Peptide Library , RNA-Binding Proteins/genetics
13.
Dis Model Mech ; 17(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38655653

ABSTRACT

Steroid myopathy is a clinically challenging condition exacerbated by prolonged corticosteroid use or adrenal tumors. In this study, we engineered a functional three-dimensional (3D) in vitro skeletal muscle model to investigate steroid myopathy. By subjecting our bioengineered muscle tissues to dexamethasone treatment, we reproduced the molecular and functional aspects of this disease. Dexamethasone caused a substantial reduction in muscle force, myotube diameter and induced fatigue. We observed nuclear translocation of the glucocorticoid receptor (GCR) and activation of the ubiquitin-proteasome system within our model, suggesting their coordinated role in muscle atrophy. We then examined the therapeutic potential of taurine in our 3D model for steroid myopathy. Our findings revealed an upregulation of phosphorylated AKT by taurine, effectively countering the hyperactivation of the ubiquitin-proteasomal pathway. Importantly, we demonstrate that discontinuing corticosteroid treatment was insufficient to restore muscle mass and function. Taurine treatment, when administered concurrently with corticosteroids, notably enhanced contractile strength and protein turnover by upregulating the AKT-mTOR axis. Our model not only identifies a promising therapeutic target, but also suggests combinatorial treatment that may benefit individuals undergoing corticosteroid treatment or those diagnosed with adrenal tumors.


Subject(s)
Dexamethasone , Models, Biological , Muscle Contraction , Muscular Diseases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Taurine , Proto-Oncogene Proteins c-akt/metabolism , Humans , Taurine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Muscle Contraction/drug effects , Dexamethasone/pharmacology , Muscular Diseases/pathology , Muscular Diseases/drug therapy , Signal Transduction/drug effects , Receptors, Glucocorticoid/metabolism , Muscle Strength/drug effects , Proteasome Endopeptidase Complex/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Organ Size/drug effects , Phosphorylation/drug effects , Adrenal Cortex Hormones/pharmacology , Ubiquitin/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Steroids/pharmacology
14.
Drug Discov Today Technol ; 10(1): e97-102, 2013.
Article in English | MEDLINE | ID: mdl-24050236

ABSTRACT

Myotonic dystrophy (DM) is a complex neuromuscular genetic disease for which there is currently no valid therapy. The recent development of non-mammal animal models opened up the possibility of performing drug discovery in vivo, using as screening readout phenotypes with underlying molecular parallels to the disease. In this review we discuss the state of the art technologies already used in large scale drug screening and provide guidance for further development of novel technologies.


Subject(s)
Drug Discovery , Myotonic Dystrophy/drug therapy , Animals , Disease Models, Animal , Humans
15.
Drug Discov Today ; 28(3): 103489, 2023 03.
Article in English | MEDLINE | ID: mdl-36634841

ABSTRACT

The beginning of the 20th decade has witnessed an increase in drug development programs for myotonic dystrophy type 1 (DM1). We have collected nearly 20 candidate drugs with accomplished preclinical and clinical phases, updating our previous drug development pipeline review with new entries and relevant milestones for pre-existing candidates. Three interventional first-in-human clinical trials got underway with distinct drug classes, namely AOC 1001 and DYNE-101 nucleic acid-based therapies, and the small molecule pitolisant, which joins the race toward market authorization with other repurposed drugs, including tideglusib, metformin, or mexiletine, already in clinical evaluation. Furthermore, newly disclosed promising preclinical data for several additional nucleic-acid therapeutic candidates and a CRISPR-based approach, as well as the advent into the pipeline of novel therapeutic programs, increase the plausibility of success in the demanding task of providing valid treatments to patients with DM1.


Subject(s)
Myotonic Dystrophy , Humans , Myotonic Dystrophy/drug therapy , Drug Development
16.
Sci Rep ; 13(1): 503, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627397

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a severe autosomal dominant neuromuscular disease in which the musculoskeletal system contributes substantially to overall mortality and morbidity. DM1 stems from a noncoding CTG trinucleotide repeat expansion in the DMPK gene. The human skeletal actin long repeat (HSALR) mouse model reproduces several aspects of the disease, but the muscle-wasting phenotype of this model has never been characterized in vivo. Herein, we used quantitative MRI to measure the fat and muscle volumes in the leg compartment (LC) of mice. These acquired data were processed to extract relevant parameters such as fat fraction and fat infiltration (fat LC/LC) in HSALR and control (FBV) muscles. These results showed increased fat volume (fat LC) and fat infiltration within the muscle tissue of the leg compartment (muscle LC), in agreement with necropsies, in which fatty clumps were observed, and consistent with previous findings in DM1 patients. Model mice did not reproduce the characteristic impaired fat fraction, widespread fat replacement through the muscles, or reduced muscle volume reported in patients. Taken together, the observed abnormal replacement of skeletal muscle by fat in the HSALR mice indicates that these mice partially reproduced the muscle phenotype observed in humans.


Subject(s)
Myotonic Dystrophy , Humans , Mice , Animals , Myotonic Dystrophy/diagnostic imaging , Myotonic Dystrophy/genetics , Myotonic Dystrophy/pathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Trinucleotide Repeat Expansion , Phenotype , Magnetic Resonance Imaging
17.
Biomed J ; : 100667, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37797921

ABSTRACT

BACKGROUND: Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the 3' untranslated region of the DM1 protein kinase gene. Characteristic degenerative muscle symptoms include myotonia, atrophy, and weakness. We previously proposed an MSI2>miR-7>autophagy axis whereby MSI2 overexpression repressed miR-7 biogenesis that subsequently de-repressed muscle catabolism through excessive autophagy. Because the DM1 HSALR mouse model expressing expanded CUG repeats shows weak muscle-wasting phenotypes, we hypothesized that MSI2 overexpression was sufficient to promote muscle dysfunction in vivo. METHODS: By means of recombinant AAV murine Msi2 was overexpressed in neonates HSALR mice skeletal muscle to induce DM1-like phenotypes RESULTS: Sustained overexpression of the murine Msi2 protein in HSALR neonates induced autophagic flux and expression of critical autophagy proteins, increased central nuclei and reduced myofibers area, and weakened muscle strength. Importantly, these changes were independent of Mbnl1, Mbnl2, and Celf1 protein levels, which remained unchanged upon Msi2 overexpression. CONCLUSIONS: Globally, molecular, histological, and functional data from these experiments in the HSALR mouse model confirms the pathological role of Msi2 expression levels as an atrophy-associated component that impacts the characteristic muscle dysfunction symptoms in DM1 patients.

18.
Mol Ther Nucleic Acids ; 31: 324-338, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36789274

ABSTRACT

A single-nucleotide deletion in the stop codon of the nuclear import receptor transportin-3 (TNPO3), also involved in human immunodeficiency virus type 1 (HIV-1) infection, causes the ultrarare autosomal dominant disease limb-girdle muscular dystrophy D2 (LGMDD2) by extending the wild-type protein. Here, we generated a patient-derived in vitro model of LGMDD2 as an immortalized myoblast cell line carrying the TNP O 3 mutation. The cell model reproduced critical molecular alterations seen in patients, such as TNP O 3 overexpression, defects in terminal muscle markers, and autophagy overactivation. Correction of the TNP O 3 mutation via CRISPR-Cas9 editing caused a significant reversion of the pathological phenotypes in edited cells, including a complete absence of the mutant TNPO3 protein, as detected with a polyclonal antibody specific against the abnormal 15-aa peptide. Transcriptomic analyses found that 15% of the transcriptome was differentially expressed in model myotubes. CRISPR-Cas9-corrected cells showed that 44% of the alterations were rescued toward normal levels. MicroRNAs (miRNAs) analyses showed that around 50% of miRNAs with impaired expression because of the disease were recovered on the mutation edition. In summary, this work provides proof of concept of the potential of CRISPR-Cas9-mediated gene editing of TNP O 3 as a therapeutic approach and describes critical reagents in LGMDD2 research.

19.
Pharmaceutics ; 15(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37111604

ABSTRACT

The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.

20.
Mol Ther Nucleic Acids ; 34: 102024, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37744174

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.

SELECTION OF CITATIONS
SEARCH DETAIL