Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Animals (Basel) ; 13(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37048416

ABSTRACT

The evolution of parameters known to be relevant indicators of energy status, oxidative stress, and antioxidant defense in chickens was followed. These parameters were measured weekly from 1 to 42 days in plasma and/or muscles and liver of two strains differing in growth rate. At 1-day old, in plasma, slow-growing (SG) chicks were characterized by a high total antioxidant status (TAS), probably related to higher superoxide dismutase (SOD) activity and uric acid levels compared to fast-growing (FG) chicks whereas the lipid peroxidation levels were higher in the liver and muscles of SG day-old chicks. Irrespective of the genotype, the plasma glutathione reductase (GR) and peroxidase (GPx) activities and levels of hydroperoxides and α- and γ-tocopherols decreased rapidly post-hatch. In the muscles, lipid peroxidation also decreased rapidly after hatching as well as catalase, GR, and GPx activities, while the SOD activity increased. In the liver, the TAS was relatively stable the first week after hatching while the value of thio-barbituric acid reactive substances (TBARS) and GR activity increased and GPx and catalase activities decreased. Our study revealed the strain specificities regarding the antioxidant systems used to maintain their redox balance over the life course. Nevertheless, the age had a much higher impact than strain on the antioxidant ability of the chickens.

2.
Sci Rep ; 13(1): 8867, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37258592

ABSTRACT

Nutrient availability in eggs can affect early metabolic orientation in birds. In chickens divergently selected on the Pectoralis major ultimate pH, a proxy for muscle glycogen stores, characterization of the yolk and amniotic fluid revealed a different nutritional environment. The present study aimed to assess indicators of embryo metabolism in pHu lines (pHu+ and pHu-) using allantoic fluids (compartment storing nitrogenous waste products and metabolites), collected at days 10, 14 and 17 of embryogenesis and characterized by 1H-NMR spectroscopy. Analysis of metabolic profiles revealed a significant stage effect, with an enrichment in metabolites at the end of incubation, and an increase in interindividual variability during development. OPLS-DA analysis discriminated the two lines. The allantoic fluid of pHu- was richer in carbohydrates, intermediates of purine metabolism and derivatives of tryptophan-histidine metabolism, while formate, branched-chain amino acids, Krebs cycle intermediates and metabolites from different catabolic pathways were more abundant in pHu+. In conclusion, the characterization of the main nutrient sources for embryos and now allantoic fluids provided an overview of the in ovo nutritional environment of pHu lines. Moreover, this study revealed the establishment, as early as day 10 of embryo development, of specific metabolic signatures in the allantoic fluid of pHu+ and pHu- lines.


Subject(s)
Chickens , Muscle, Skeletal , Animals , Chickens/metabolism , Muscle, Skeletal/metabolism , Glycogen/metabolism , Pectoralis Muscles/physiology , Metabolome
3.
Physiol Genomics ; 44(5): 283-92, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22214599

ABSTRACT

Chickens mimic an insulin-resistance state by exhibiting several peculiarities with regard to plasma glucose level and its control by insulin. To gain insight into the role of insulin in the control of chicken transcriptome, liver and leg muscle transcriptomes were compared in fed controls and "diabetic" chickens, at 5 h after insulin immuno-neutralization, using 20.7K-chicken oligo-microarrays. At a level of false discovery rate <0.01, 1,573 and 1,225 signals were significantly modified by insulin privation in liver and muscle, respectively. Microarray data agreed reasonably well with qRT-PCR and some protein level measurements. Differentially expressed mRNAs with human ID were classified using Biorag analysis and Ingenuity Pathway Analysis. Multiple metabolic pathways, structural proteins, transporters and proteins of intracellular trafficking, major signaling pathways, and elements of the transcriptional control machinery were largely represented in both tissues. At least 42 mRNAs have already been associated with diabetes, insulin resistance, obesity, energy expenditure, or identified as sensors of metabolism in mice or humans. The contribution of the pathways presently identified to chicken physiology (particularly those not yet related to insulin) needs to be evaluated in future studies. Other challenges include the characterization of "unknown" mRNAs and the identification of the steps or networks, which disturbed tissue transcriptome so extensively, quickly after the turning off of the insulin signal. In conclusion, pleiotropic effects of insulin in chickens are further evidenced; major pathways controlled by insulin in mammals have been conserved despite the presence of unique features of insulin signaling in chicken muscle.


Subject(s)
Antibodies, Neutralizing/pharmacology , Chickens/immunology , Insulin/immunology , Liver/drug effects , Muscle, Skeletal/drug effects , Transcriptome/drug effects , Animal Feed , Animals , Gene Expression Regulation/drug effects , Insulin/physiology , Insulin Antibodies/immunology , Insulin Antibodies/metabolism , Insulin Antibodies/pharmacology , Liver/metabolism , Metabolic Networks and Pathways/drug effects , Microarray Analysis , Muscle, Skeletal/metabolism , Neutralization Tests , Proteins/drug effects , Proteins/metabolism
4.
Front Physiol ; 13: 852733, 2022.
Article in English | MEDLINE | ID: mdl-35299663

ABSTRACT

This study was designed to improve the hatching performance, chick robustness and poultry health in the event of long-term egg storage and suboptimal age of the reproductive flock. A total of 9,600 eggs from one young breeder flock (28 weeks of age, batch B) and 9,600 eggs from an older breeder flock (59 weeks of age, batch E) were used (ROSS 308). Each batch was separated into three sub-groups and stored for 14 days. The first sub-group of eggs (Cool, group C) was stored at 11.6°C. The second sub-group of eggs (Warm, group W) was stored at 18.3°C with two pre-incubation on days 6 and 10 of the storage period. The final sub-group of eggs (Control, group Ct) was stored at 18.3°C throughout the storage period. Eggs were similarly incubated and hatched birds were raised on the same experimental farm. In both batches, embryonic development was significantly more advanced in W eggs than in C and Ct eggs ( p < 0.01). In both batches, C and W treatments decreased early embryonic mortality by more than 10% compared with Ct, decreased the proportion of late-hatched chicks and improved the percentage of first grade chicks: in batch E, 42% of Ct eggs were first grade chicks vs. 57% in group W and 59% in group C. Benefits were even higher in batch B, where only 60% of Ct eggs gave first grade chicks vs. 83% in others groups. The hatching rate was thus higher in groups C and W regardless of flock age: for batch B eggs, 85% hatched in W and 84% in C vs. 62% in Ct, while for batch E eggs, 59% hatched in W and 61% in C vs. 45% in Ct. Day-old Ct chicks from batch E were heavier than W and C ones, and heavier than W chicks from batch B ( p < 0.05). Long-term parameters on farm were not significantly different between groups. Thermal treatments during the storage of eggs from both young and old breeder flocks counterbalance the negative effects of prolonged egg storage on hatching rate, without altering chicken performance during rearing.

5.
Sci Rep ; 12(1): 5533, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365762

ABSTRACT

The pHu+ and pHu- lines, which were selected based on the ultimate pH (pHu) of the breast muscle, represent a unique model to study the genetic and physiological controls of muscle energy store in relation with meat quality in chicken. Indeed, pHu+ and pHu- chicks show differences in protein and energy metabolism soon after hatching, associated with a different ability to use energy sources in the muscle. The present study aimed to assess the extent to which the nutritional environment of the embryo might contribute to the metabolic differences observed between the two lines at hatching. Just before incubation (E0), the egg yolk of pHu+ exhibited a higher lipid percentage compared to the pHu- line (32.9% vs. 27.7%). Although 1H-NMR spectroscopy showed clear changes in egg yolk composition between E0 and E10, there was no line effect. In contrast, 1H-NMR analysis performed on amniotic fluid at embryonic day 10 (E10) clearly discriminated the two lines. The amniotic fluid of pHu+ was richer in leucine, isoleucine, 2-oxoisocaproate, citrate and glucose, while choline and inosine were more abundant in the pHu- line. Our results highlight quantitative and qualitative differences in metabolites and nutrients potentially available to developing embryos, which could contribute to metabolic and developmental differences observed after hatching between the pHu+ and pHu- lines.


Subject(s)
Chickens , Zygote , Animals , Chickens/genetics , Hydrogen-Ion Concentration , Meat/analysis , Muscle, Skeletal/metabolism , Nutrients
6.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R201-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21508290

ABSTRACT

The avian uncoupling protein 3 (UCP3), mainly expressed in muscle tissue, could be involved in fatty acid (FA) metabolism, limitation of reactive oxygen species production, and/or nonshivering thermogenesis. We recently demonstrated that UCP3 mRNA expression was increased by isoproterenol (Iso), a ß-agonist, in chicken Pectoralis major. This upregulation was associated with changes in FA metabolism and variations in the activation of AMP-activated protein kinase (AMPK) and in the expression of the transcription factors peroxisome proliferator-activated receptor (PPAR)α, PPARß/δ, and PPARγ coactivator-1α (PGC-1α). The aim of the present study was to elucidate the mechanisms involving AMPK and PPARα in UCP3 regulation in primary cultures of chick myoblasts. Avian UCP3 mRNA expression, associated with p38 mitogen-activated protein kinase (p38 MAPK) activation, was increased by Iso and/or FAs. The PKA pathway mediated the effects of Iso on UCP3 expression. FA stimulation also led to AMPK activation. Furthermore, the direct involvement of AMPK on UCP3 regulation was shown by using 5-aminoimidazole-4-carboxyamide ribonucleoside and Compound C. The use of the p38 MAPK inhibitor SB202190, which was associated with AMPK activation, also dramatically enhanced UCP3 mRNA expression. Finally the PPARα agonist WY-14643 strongly increased UCP3 mRNA expression. This study highlights the control of UCP3 expression by the ß-adrenergic system and FA in chick myoblasts and demonstrates that its expression is directly regulated by AMPK and by PPARα. Overexpression of avian UCP3 might modulate energy utilization or limit oxidative stress when mitochondrial metabolism of FA is triggered by catecholamines.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Avian Proteins/metabolism , Chickens/physiology , Fatty Acids/pharmacology , Isoproterenol/pharmacology , Mitochondrial Proteins/metabolism , Myoblasts, Skeletal/metabolism , PPAR alpha/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Energy Metabolism/physiology , Mitochondrial Uncoupling Proteins , Models, Animal , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/drug effects , Oxidative Stress/physiology , RNA, Messenger/metabolism , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Front Vet Sci ; 8: 759456, 2021.
Article in English | MEDLINE | ID: mdl-34746291

ABSTRACT

The potential of herbal extracts containing bioactive compounds to strengthen immunity could contribute to reducing antimicrobial use in poultry. This study aimed at developing a reliable and robust methodological pipeline to assess the ability of herbal extracts to strengthen chicken innate defenses, especially concerning inflammation and oxidative stress. This methodology was applied to Melissa officinalis L. (MEL) extract, recognized for its biological activities including antioxidant and anti-inflammatory properties. Different methods were used to (1). guarantee the quality of MEL extract and its capacity to stimulate the innate immune system; (2). evaluate the relevance of an ex vivo model to mimic inflammatory and oxidative stress challenges to replace LPS injection in chickens; (3). analyse the effects of feed supplemented with MEL extract on inflammation and oxidative stress induced ex vivo; (4). assess the effects of MEL extract on the redox balance, health, welfare and performance in broilers exposed to suboptimal starting conditions through a large-scale approach. The quality of MEL extract preparations, through phytochemical quantification of rosmarinic acid (RA), revealed varying concentrations of RA in the different MEL extracts. RA concentrations remained stable for at least 9 months and in feed three months after incorporating MEL extract. When incubated with chicken cell lines MEL extract showed potential metabolic activation and ability to stimulate immune functions but induced cytotoxicity at high concentrations. The original ex vivo model of inflammation developed on chicken blood cells enabled inflammation and oxidative stress biomarkers to be expressed and revealed antioxidative and anti-inflammatory properties of blood cells from chickens fed MEL extract. The experimental model of chicken suboptimal starting conditions validated beneficial effects of MEL extract on the redox balance and also evidenced improved performance during the growth phase, a tendency for fewer muscle defects but a higher severity of pododermatitis lesions without affecting other welfare indicators. This study grouped methods and tools that could be combined according to the plant extract, the needs of professionals working in poultry production systems and staff responsible for animal health, welfare and feeding.

8.
Front Physiol ; 12: 643580, 2021.
Article in English | MEDLINE | ID: mdl-33746779

ABSTRACT

In chickens, a divergent selection on the Pectoralis major pHu allowed the creation of the pHu+ and pHu- lines, which represent a unique model for studying the biological control of carbohydrate storage in muscle. The present study aimed to describe the early mechanisms involved in the establishment of pHu+ and pHu- phenotypes. At hatching, pHu+ chicks were slightly heavier but exhibited lower plasma glucose and triglyceride and higher uric acid. After 5 days, pHu+ chicks exhibited higher breast meat yield compared to pHu- while their body weight was no different. At both ages, in vivo muscle glycogen content was lower in pHu+ than in pHu- muscles. The lower ability of pHu+ chicks to store carbohydrate in their muscle was associated with the increased expression of SLC2A1 and SLC2A3 genes coding glucose transporters 1 and 3, and of CS and LDHα coding key enzymes of oxidative and glycolytic pathways, respectively. Reduced muscle glycogen content at hatching of the pHu+ was concomitant with higher activation by phosphorylation of S6 kinase 1/ribosomal protein S6 pathway, known to activate protein synthesis in chicken muscle. In conclusion, differences observed in muscle at slaughter age in the pHu+ and pHu- lines are already present at hatching. They are associated with several changes related to both carbohydrate and protein metabolism, which are likely to affect their ability to use eggs or exogenous nutrients for muscle growth or energy storage.

9.
PLoS One ; 15(1): e0227700, 2020.
Article in English | MEDLINE | ID: mdl-31971994

ABSTRACT

In vertebrates, the embryonic environment is known to affect the development and the health of individuals. In broiler chickens, the thermal-manipulation (TM) of eggs during the incubation period was shown to improve heat tolerance at slaughter age (35 days of age) in association with several modifications at the molecular, metabolic and physiological levels. However, little is known about the Japanese quail (Coturnix japonica), a closely related avian species widely used as a laboratory animal model and farmed for its meat and eggs. Here we developed and characterized a TM procedure (39.5°C and 65% relative humidity, 12 h/d, from days 0 to 13 of incubation) in quails by analyzing its short and long-term effects on zootechnical, physiological and metabolic parameters. Heat-tolerance was tested by a heat challenge (36°C for 7h) at 35 days of age. TM significantly reduced the hatching rate of the animals and increased mortality during the first four weeks of life. At hatching, TM animals were heavier than controls, but lighter at 25 days of age for both sexes. Thirty-five days after hatching, TM decreased the surface temperature of the shank in females, suggesting a modulation of the blood flow to maintain the internal temperature. TM also increased blood partial pressure and oxygen saturation percentage at 35 days of age in females, suggesting a long-term modulation of the respiration physiology. Quails physiologically responded to the heat challenge, with a modification of several hematologic and metabolic parameters, including an increase in plasma corticosterone concentration. Several physiological parameters such as beak surface temperature and blood sodium concentration revealed that TM birds responded differently to the heat challenge compared to controls. Altogether, this first comprehensive characterization of TM in Japanese quail showed durable effects that may affect the response of TM quails to heat.


Subject(s)
Body Temperature Regulation/physiology , Coturnix/embryology , Animals , Antioxidants/metabolism , Chick Embryo , Chickens/growth & development , Chickens/physiology , Coturnix/growth & development , Coturnix/physiology , Embryonic Development/physiology , Female , Gases/blood , Hot Temperature , Male , Thermotolerance/physiology
10.
PLoS One ; 15(4): e0231131, 2020.
Article in English | MEDLINE | ID: mdl-32282838

ABSTRACT

In reproductive hens, a feed restriction is an usual practice to improve metabolic and reproductive disorders. However, it acts a stressor on the animal. In mammals, grape seed extracts (GSE) reduces oxidative stress. However, their effect on endocrine and tissue response need to be deepened in reproductive hens. Here, we evaluated the effects of time and level of GSE dietary supplementation on growth performance, viability, oxidative stress and metabolic parameters in plasma and metabolic tissues in reproductive hens and their offsprings. We designed an in vivo trial using 4 groups of feed restricted hens: A (control), B and C (supplemented with 0.5% and 1% of the total diet composition in GSE since week 4, respectively) and D (supplemented with 1% of GSE since the hatch). In hens from hatch to week 40, GSE supplementation did not affect food intake and fattening whatever the time and dose of supplementation. Body weight was significantly reduced in D group as compared to control. In all hen groups, GSE supplementation decreased plasma oxidative stress index associated to a decrease in the mRNA expression of the NOX4 and 5 oxidant genes in liver and muscle and an increase in SOD mRNA expression. This was also associated to decreased plasma chemerin and increased plasma adiponectin and visfatin levels. Interestingly, maternal GSE supplementation increased the live body weight and viability of chicks at hatching and 10 days of age. This was associated to a decrease in plasma and liver oxidative stress parameters. Taken together, GSE maternal dietary supplementation reduces plasma and tissue oxidative stress associated to modulation of adipokines without affecting fattening in reproductive hens. A 1% GSE maternal dietary supplementation increased offspring viability and reduced oxidative stress suggesting a beneficial transgenerational effect and a potential use to improve the quality of the progeny in reproductive hens.


Subject(s)
Animal Husbandry/methods , Antioxidants/administration & dosage , Chickens/growth & development , Dietary Supplements , Grape Seed Extract/administration & dosage , Adiponectin/blood , Adiponectin/metabolism , Animals , Body Weight/drug effects , Breeding/methods , Chemokines/blood , Chemokines/metabolism , Chickens/blood , Diet/adverse effects , Diet/veterinary , Female , Maternal-Fetal Exchange/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pregnancy , Reproduction/physiology
11.
J Nutr ; 139(1): 38-43, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19056657

ABSTRACT

Amino acids are known to be anabolic factors that affect protein metabolism, but the response of animals to daily amino acid changes is little understood. We aimed to test the effects of feeding birds with alternations of diets varying in lysine content on the expression of genes related to proteolysis in chicken muscle. Cyclic feeding programs with 2 diets, each given for 24 h during 48-h cycles, were carried out from 10 d of age. Three programs were used: 1) control treatment with continuous distribution of a complete diet containing standard medium lysine level (ML; 11.9 g/kg); 2) alternation of diets with high (HL) and low (LL) lysine levels; 3) alternation of ML and LL diets, where LL = 70%, ML = 100%, HL = 130% of standard lysine level. The Pectoralis major muscles were sampled after 2 wk of cyclic feeding. Measurements included the expression patterns of 6 genes involved in proteolysis, and mammalian target of rapamycin and Forkhead box-O transcription factor (FoxO) signaling. Cathepsin B, m-calpain, and E3 ubiquitin ligases Muscle Ring Finger-1 and Muscle Atrophy F box were significantly overexpressed in chickens transiently fed the LL diet, whereas the mRNA levels of 20S proteasome C2 subunit and ubiquitin remained unchanged. Modifications of E3 ubiquitin ligase expression can be partly explained by significant changes in FoxO phosphorylation with cyclic dietary treatments. Our results suggest timing-sensitive regulation of proteolysis in chicken muscle according to dietary treatment and a high metabolism capacity to compensate for changes in amino acid supply, which might be used for nutritional purposes.


Subject(s)
Chickens/metabolism , Dietary Proteins/pharmacology , Gene Expression Regulation/drug effects , Lysine/pharmacology , Muscle, Skeletal/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dose-Response Relationship, Drug , Gene Expression Profiling , Male , Muscle Proteins/genetics , Muscle Proteins/metabolism , Phosphorylation
12.
Poult Sci ; 98(9): 4140-4152, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31220330

ABSTRACT

In order to determine the body composition of parental broilers during growth from hatching to adulthood (32 wk of age), we evaluated the kinetics of fattening, growth rate, reproduction parameters, and body composition of the animals by using non-invasive tools such as medical imaging (ultrasound and CT scan) and blood sample analysis. The use of CT scanner allowed us to monitor the development of the body composition (fatness, bone, muscle, ovary, and testis growth) of these same animals. These analyses were accompanied by biochemical blood analyses such as steroids, metabolites, and some adipokines concentration. Difference in the body composition between males and females appeared at 16 wk of age. From 20 wk of age, shortly before the onset of lay, the females had 1.6-fold more adipose tissues than males (P < 0.001) and 8-fold more elevated plasma triglycerides levels. In addition, females, from 16 wk of age, presented a weakened bone quality in comparison to males (P < 0.001). The ratio of the tibia volume/tibia length was 33.2% lower in female compared to male chicken at 32 wk of age (P < 0.001). However, the pectoral muscle had the same volume in both sexes. The production of steroids by gonad started at 16 wk of age for both sexes, and the testis and ovary development could be measured by imaging tools at 24 wk. The follicle development was correlated to the ovarian fat tissue (r = 0.80) and fatness. In conclusion, the use of CT scanner and ultrasound system has allowed investigate the body composition of live animals and actual parental breeds with to the aim of using them for genetic selection.


Subject(s)
Animal Husbandry/methods , Chickens/physiology , Mass Spectrometry/veterinary , Tomography, X-Ray Computed/veterinary , Ultrasonography/veterinary , Animals , Body Composition , Breeding , Chickens/growth & development , Female , Male , Mass Spectrometry/methods , Tomography, X-Ray Computed/methods , Ultrasonography/methods
13.
Gen Comp Endocrinol ; 158(2): 173-7, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18662691

ABSTRACT

We recently provided evidence of the presence of glucokinase (GCK) in the chicken liver [Berradi, H., Taouis, M., Cassy, S., Rideau, N., 2005. Glucokinase in chicken (Gallus gallus). Partial cDNA cloning, immunodetection and activity determination. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141, 129-139]. In the present study we addressed the question of whether nutritional regulation of GCK occurs. Several nutritional conditions were compared in chickens (5 weeks old) previously trained to meal-feeding. One group was left in the fasted state (F: 24h) and one was tested at the end of the 2h meal (refed: RF). Two other 2h meal-refed groups received an acute oral saccharose load (6ml/kg BW) just before the 2h meal and were sacrificed either at the end of the meal (Saccharose refed, SRF) or 3h later (SRF+3). Liver GCK mRNA and protein levels did not differ between F, RF and SRF chickens but were significantly increased in SRF+3 chickens (2-fold, p<0.05). GCK activity did not differ between F and RF chickens but increased significantly in SRF and SRF+3 chickens (1.7-fold, p<0.05). Chicken liver GCK expression (mRNA and protein) and activity were therefore inducible in these chickens by feeding a meal with acute oral administration of carbohydrate. These and recent findings demonstrating insulin dependency of the liver GCK mRNA and protein strongly suggest that GCK may have an important role in carbohydrate metabolism, including that of the chicken. However, even in these highly stimulatory conditions, liver GCK activity remained relatively low in comparison with other species. The latter result may partly explain the high plasma glucose level in the chicken.


Subject(s)
Chickens/metabolism , Dietary Carbohydrates/administration & dosage , Glucokinase/biosynthesis , Liver/drug effects , Liver/enzymology , Animals , Blood Glucose/metabolism , Blotting, Western/veterinary , Body Weight/drug effects , Body Weight/physiology , Eating/drug effects , Eating/physiology , Enzyme Induction/drug effects , Glucokinase/genetics , Insulin/blood , Insulin/metabolism , Kinetics , Male , Organ Size/drug effects , Organ Size/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Statistics, Nonparametric
14.
Domest Anim Endocrinol ; 34(1): 1-13, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17029674

ABSTRACT

p70 S6 kinase (p70S6K) is a key enzyme involved in the control of protein synthesis. We have previously shown that this kinase is insulin sensitive in chicken muscle despite a relative insulin resistance in the early steps of insulin receptor signaling in this tissue, particularly with no change in tyrosine phosphorylation of the insulin receptor substrate 1 (IRS1). The aim of the present study is to further study the p70S6K pathway in chicken muscle. By analyzing in silico several kinases involved in the protein kinase B (PKB also called AKT)/target of rapamycin (TOR)/p70S6K pathway in the chicken, we showed that the amino acid sequence of the proteins exhibited a very high identity with their homologs in mammalian species and Drosophila. We investigated the regulation of these kinases in vivo or in vitro. Refeeding and insulin treatment significantly (P<0.05) increased the phosphorylation and/or activity of kinases upstream of p70S6K such as AKT and TOR. Similarly, refeeding and insulin increased the phosphorylation of p70S6K on key residues (i.e. T389, T229 and T421/S424) and the phosphorylation of a p70S6K downstream target, the ribosomal protein S6 (by 3-10-fold, P<0.05). Interestingly, we also showed an increase in the phosphorylation level of IRS1 on S632/S635, sites involved in insulin resistance. In conclusion, the AKT/TOR/p70S6K pathway is activated by refeeding and insulin injection, which might negatively regulate IRS1 tyrosine phosphorylation. These results indicate some particularities of the insulin signaling in chicken muscle and suggest the involvement of p70S6K in these features.


Subject(s)
Chickens/metabolism , Insulin/pharmacology , Pectoralis Muscles/enzymology , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Amino Acid Sequence , Animals , Blotting, Western/veterinary , Cluster Analysis , Enzyme Activation , Food Deprivation , Insulin/metabolism , Insulin Receptor Substrate Proteins , Male , Pectoralis Muscles/metabolism , Phosphorylation/drug effects , Protein Kinases/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases
15.
Domest Anim Endocrinol ; 34(1): 63-73, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17166687

ABSTRACT

In mammals, insulin regulates S6K1, a key enzyme involved in the control of protein synthesis, via the well-documented phosphoinositide-3'kinase (PI3K) pathway. Conversely, S6K1 is activated by insulin in avian muscle despite the relative insulin insensitivity of the PI3K pathway in this tissue. Mitogen-activated protein kinase (MAPK) cascade is another insulin sensitive pathway. The aim of this study was to explore the potential involvement of the ERK1/2 MAPK pathway in the control of p70 S6 kinase (S6K1) in avian species. Firstly, we characterized ERK1/2 MAPK in various chicken tissues. ERK2 was the only isoform detected in avian species whatever the tissue studied. We also showed that ERK2 is activated in vivo by insulin in chicken muscle. The regulation and the role of ERK2 in insulin signaling were next investigated in chicken hepatoma cells (LMH) and primary myoblasts. Insulin stimulation led to ERK2 and S6K1 phosphorylation, and concomitantly increased kinase activity. U0126, an inhibitor of the ERK MAPK pathway, completely abolished insulin-induced S6K1 phosphorylation and activity in chicken myoblasts, whereas its effect was only partial in LMH cells. In conclusion, these results show that ERK1/2 MAPK is involved in the control of S6K1 by insulin in chicken cells, particularly myoblasts.


Subject(s)
Chickens/metabolism , Insulin/pharmacology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Pectoralis Muscles/enzymology , Ribosomal Protein S6 Kinases/metabolism , Animals , Blotting, Western/veterinary , Butadienes/pharmacology , Cell Line, Tumor , Chromones/pharmacology , Enzyme Activation , Insulin/metabolism , Liver Neoplasms, Experimental , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Morpholines/pharmacology , Myoblasts, Skeletal/enzymology , Nitriles/pharmacology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Ribosomal Protein S6 Kinases/genetics
16.
J Anim Sci ; 96(2): 498-509, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29401234

ABSTRACT

Glucose transport into cells is the first limiting step for the regulation of glucose homeostasis. In mammals, it is mediated by a family of facilitative glucose transporters (GLUTs) (encoded by SLC2A* genes), with a constitutive role (GLUT1), or insulin-sensitive transporters (GLUT4, GLUT8, and GLUT12). Compared to mammals, the chicken shows high levels of glycemia and relative insensitivity to exogenous insulin. To date, only GLUT1, GLUT8, and GLUT12 have been described in chicken skeletal muscles but not fully characterized, whereas GLUT4 was reported as lacking. The aim of the present study was to determine the changes in the expression of the SLC2A1, SLC2A8, and SLC2A12 genes, encoding GLUT1, GLUT8, and GLUT12 proteins respectively, during ontogenesis and how the respective expression of these three genes is affected by the muscle type and the nutritional or insulin status of the bird (fed, fasted, or insulin immunoneutralized). SLC2A1 was mostly expressed in the glycolytic pectoralis major (PM) muscle during embryogenesis and 5 d posthatching while SLC2A8 was mainly expressed at hatching. SLC2A12 expression increased regularly from 12 d in ovo up to 5 d posthatching. In the mixed-type sartorius muscle, the expression of SLC2A1 and SLC2A8 remained unchanged, whereas that of SLC2A12 was gradually increased during early muscle development. The expression of SLC2A1 and SLC2A8 was greater in oxidative and oxidoglycolytic muscles than in glycolytic muscles. The expression of SLC2A12 differed considerably between muscles but not necessarily in relation to muscle contractile or metabolic type. The expression of SLC2A1, SLC2A8, and SLC2A12 was reduced by fasting and insulin immunoneutralization in the PM muscle, while in the leg muscles only SLC2A12 was impaired by insulin immunoneutralization. Our findings clearly indicate differential regulation of the expression of three major GLUTs in skeletal muscles, with some type-related features. They provide new insights to improve the understanding of the fine regulation of glucose utilization in chicken muscles.


Subject(s)
Chickens/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Insulin Resistance , Insulin/metabolism , Animals , Biological Transport , Blood Glucose/analysis , Glucose/metabolism , Glucose Transport Proteins, Facilitative/genetics , Male , Muscle, Skeletal/metabolism
17.
Domest Anim Endocrinol ; 31(2): 123-40, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16307863

ABSTRACT

The phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase able to inhibit significant actors of cell signaling (i.e. phosphatidylinositol-3'kinase and mitogen-activated protein kinase pathways). The aim of this study was to characterize PTEN and to investigate its regulation during ontogenesis in chicken muscle. Pectoralis major muscle was sampled on day 18 of the embryonic period (E18), at hatching (d0) and in fed chickens at 2, 7 and 43 days after hatching (d2, d7 and d43). We first cloned the totality of chicken PTEN cDNA; its translation into a putative protein showed more than 95% sequence identity with that characterized in mammals (humans, mice). PTEN was expressed under two major transcripts in the majority of tissues, including muscles where the expression of PTEN mRNA increased with age (P < 0.05). Surprisingly, the protein levels of PTEN (protein characterized with an apparent molecular weight of 55kDa) and its activity were considerably decreased between the E18 and d43 stages (approximately 8-10-fold reduction, P < 0.001). An association between these decreases and higher phosphorylation levels of two potential indirect downstream targets of phosphatase (i.e. AKT and ERK) was observed only in the early growth phases. It was concluded that phosphatase PTEN was expressed in chicken muscle and that its expression was regulated during ontogenesis.


Subject(s)
Chickens/physiology , PTEN Phosphohydrolase/metabolism , Pectoralis Muscles/enzymology , Amino Acid Sequence , Animals , Base Sequence , Blood Glucose/metabolism , Blotting, Northern/veterinary , Blotting, Western/veterinary , Chick Embryo , Chickens/growth & development , Chickens/metabolism , Insulin/blood , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Molecular Sequence Data , PTEN Phosphohydrolase/biosynthesis , PTEN Phosphohydrolase/genetics , Pectoralis Muscles/embryology , Pectoralis Muscles/growth & development , Phosphorylation , Proto-Oncogene Proteins c-akt/biosynthesis , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sequence Alignment , Signal Transduction
18.
PLoS One ; 10(10): e0139517, 2015.
Article in English | MEDLINE | ID: mdl-26431526

ABSTRACT

In mammals, insulin-sensitive GLUTs, including GLUT4, are recruited to the plasma membrane of adipose and muscle tissues in response to insulin. The GLUT4 gene is absent from the chicken genome, and no functional insulin-sensitive GLUTs have been characterized in chicken tissues to date. A nucleotide sequence is predicted to encode a chicken GLUT12 ortholog and, interestingly, GLUT12 has been described to act as an insulin-sensitive GLUT in mammals. It encodes a 596 amino acid protein exhibiting 71% identity with human GLUT12. First, we present the results of a phylogenetic study showing the stability of this gene during evolution of vertebrates. Second, tissue distribution of chicken SLC2A12 mRNA was characterized by RT-PCR. It was predominantly expressed in skeletal muscle and heart. Protein distribution was analysed by Western blotting using an anti-human GLUT12 antibody directed against a highly conserved region (87% of identity). An immuno-reactive band of the expected size (75kDa) was detected in the same tissues. Third a physiological characterization was performed: SLC2A12 mRNA levels were significantly lowered in fed chickens subjected to insulin immuno-neutralization. Finally, recruitment of immuno-reactive GLUT12 to the muscle plasma membrane was increased following 1h of intraperitoneal insulin administration (compared to a control fasted state). Thus insulin administration elicited membrane GLUT12 recruitment. In conclusion, these results suggest that the facilitative glucose transporter protein GLUT12 could act in chicken muscle as an insulin-sensitive transporter that is qualitatively similar to GLUT4 in mammals.


Subject(s)
Chickens/genetics , Glucose Transport Proteins, Facilitative/genetics , Animals , Chickens/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Heart/physiology , Insulin/metabolism , Male , Muscle, Skeletal/metabolism , Phylogeny , RNA, Messenger/genetics , Tissue Distribution/genetics
19.
PLoS One ; 9(9): e105339, 2014.
Article in English | MEDLINE | ID: mdl-25180913

ABSTRACT

Fast-growing chickens have a limited ability to tolerate high temperatures. Thermal manipulation during embryogenesis (TM) has previously been shown to lower chicken body temperature (Tb) at hatching and to improve thermotolerance until market age, possibly resulting from changes in metabolic regulation. The aim of this study was to evaluate the long-term effects of TM (12 h/d, 39.5°C, 65% RH from d 7 to 16 of embryogenesis vs. 37.8°C, 56% RH continuously) and of a subsequent heat challenge (32°C for 5 h at 34 d) on the mRNA expression of metabolic genes and cell signaling in the Pectoralis major muscle and the liver. Gene expression was analyzed by RT-qPCR in 8 chickens per treatment, characterized by low Tb in the TM groups and high Tb in the control groups. Data were analyzed using the general linear model of SAS considering TM and heat challenge within TM as main effects. TM had significant long-term effects on thyroid hormone metabolism by decreasing the muscle mRNA expression of deiodinase DIO3. Under standard rearing conditions, the expression of several genes involved in the regulation of energy metabolism, such as transcription factor PGC-1α, was affected by TM in the muscle, whereas for other genes regulating mitochondrial function and muscle growth, TM seemed to mitigate the decrease induced by the heat challenge. TM increased DIO2 mRNA expression in the liver (only at 21°C) and reduced the citrate synthase activity involved in the Krebs cycle. The phosphorylation level of p38 Mitogen-activated-protein kinase regulating the cell stress response was higher in the muscle of TM groups compared to controls. In conclusion, markers of energy utilization and growth were either changed by TM in the Pectoralis major muscle and the liver by thermal manipulation during incubation as a possible long-term adaptation limiting energy metabolism, or mitigated during heat challenge.


Subject(s)
Body Temperature , Chickens/growth & development , Embryonic Development , Liver/metabolism , Muscles/metabolism , Animals , Chick Embryo , Chickens/genetics , Embryonic Development/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Insulin/metabolism , Liver/enzymology , Muscles/enzymology , Phosphorylation , Protein Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Stress, Physiological , Time Factors
20.
J Endocrinol ; 197(3): 531-42, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18492818

ABSTRACT

In order to evaluate the role of insulin in chicken, an insulin immuno-neutralization was performed. Fed chickens received 1 or 3 i.v. injections of anti-insulin serum (2-h intervals), while fed or fasted controls received normal serum. Measurements included insulin signaling cascade (at 1 h in liver and muscle), metabolic or endocrine plasma parameters (at 1 and 5 h), and qRT-PCR analysis (at 5 h) of 23 genes involved in endocrine regulation, metabolisms, and transcription. Most plasma parameters and food intake were altered by insulin privation as early as 1 h and largely at 5 h. The initial steps of insulin signaling pathways including insulin receptor (IR), IR substrate-1 (IRS-1), and Src homology collagen and downstream elements: phosphatidylinositol 3-kinase (PI3K), Akt, GSK3, ERK2, and S6 ribosomal protein) were accordingly turned off in the liver. In the muscle, IR, IRS-1 tyrosine phosphorylation, and PI3K activity remained unchanged, whereas several subsequent steps were altered by insulin privation. In both tissues, AMPK was not altered. In the liver, insulin privation decreased Egr1, PPAR gamma, SREBP1, THRSP alpha (spot 14), D2-deiodinase, glucokinase (GK), and fatty acid synthase (whereas D3-deiodinase and IGF-binding protein 1 transcripts were up-regulated. Liver SREBP1 and GK and plasma IGFBP1 proteins were accordingly down- and up-regulated. In the muscle, PPAR beta delta and atrogin-1 mRNA increased and Egr1 mRNA decreased. Changes in messengers were partly mimicked by fasting. Thus, insulin signaling in muscle is peculiar in chicken and is strictly dependent on insulin in fed status. The 'diabetic' status induced by insulin immuno-neutralization is accompanied by impairments of glucagon secretion, thyroid axis, and expression of several genes involved in regulatory pathways or metabolisms, evidencing pleiotropic effects of insulin in fed chicken.


Subject(s)
Insulin/physiology , Liver/metabolism , Muscle, Skeletal/metabolism , Signal Transduction/physiology , Adenylate Kinase/metabolism , Animals , Chickens , Early Growth Response Protein 1/genetics , Glucokinase/genetics , Insulin/immunology , Insulin Receptor Substrate Proteins/metabolism , Male , PPAR gamma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Insulin/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL