Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Respir Res ; 25(1): 52, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263221

ABSTRACT

BACKGROUND: Mucus plugs have been described in the airways of asthmatic subjects, particularly those with associated with type 2 inflammation and sputum eosinophilia. In the current study we addressed the question of whether smoking, neutrophilic inflammation and airway dimensions affected the prevalence of mucus plugs. METHODS: In a cohort of moderate to severe asthmatics (n = 50), including a group of ex-smokers and current smokers, the prevalence of mucus plugs was quantified using a semi-quantitative score based on thoracic computerized tomography. The relationships between mucus score, sputum inflammatory profile and airway architecture were tested according to patient's smoking status. RESULTS: Among the asthmatics (37% former or active smokers), 74% had at least one mucus plug. The median score was 3 and was unrelated to smoking status. A significant but weak correlation was found between mucus score, FEV1 and FEV1/FVC. Mucus score was significantly correlated with sputum eosinophils. Among former and active smokers, mucus score was correlated with sputum neutrophils. Mucus score was positively associated with FeNO in non-smoking subjects. The lumen dimensions of the main and lobar bronchi were significantly inversely correlated with mucus score. CONCLUSION: Airway mucus plugs could define an asthma phenotype with altered airway architecture and can occur in asthmatic subjects with either neutrophilic or eosinophilic sputum according to their smoking status.


Subject(s)
Asthma , Humans , Mucus , Sputum , Bronchi , Inflammation
2.
J Allergy Clin Immunol ; 148(2): 394-406, 2021 08.
Article in English | MEDLINE | ID: mdl-33508265

ABSTRACT

BACKGROUND: Asthma severity has been linked to exposure to gram-negative bacteria from the environment that are recognized by NOD1 receptor and are present in house dust mite (HDM) extracts. NOD1 polymorphism has been associated with asthma. OBJECTIVE: We sought to evaluate whether either host or HDM-derived microbiota may contribute to NOD1-dependent disease severity. METHODS: A model of HDM-induced experimental asthma was used and the effect of NOD1 deficiency was evaluated. Contribution of host microbiota was evaluated by fecal transplantation. Contribution of HDM-derived microbiota was assessed by 16S ribosomal RNA sequencing, mass spectrometry analysis, and peptidoglycan depletion of the extracts. RESULTS: In this model, loss of the bacterial sensor NOD1 and its adaptor RIPK2 improved asthma features. Such inhibitory effect was not related to dysbiosis caused by NOD1 deficiency, as shown by fecal transplantation of Nod1-deficient microbiota to wild-type germ-free mice. The 16S ribosomal RNA gene sequencing and mass spectrometry analysis of HDM allergen, revealed the presence of some muropeptides from gram-negative bacteria that belong to the Bartonellaceae family. While such HDM-associated muropeptides were found to activate NOD1 signaling in epithelial cells, peptidoglycan-depleted HDM had a decreased ability to instigate asthma in vivo. CONCLUSIONS: These data show that NOD1-dependent sensing of HDM-associated gram-negative bacteria aggravates the severity of experimental asthma, suggesting that inhibiting the NOD1 signaling pathway may be a therapeutic approach to treating asthma.


Subject(s)
Asthma/immunology , Gastrointestinal Microbiome/immunology , Nod1 Signaling Adaptor Protein/immunology , Pyroglyphidae/immunology , Signal Transduction/immunology , Animals , Asthma/chemically induced , Asthma/genetics , Asthma/microbiology , Disease Models, Animal , Female , Mice , Mice, Knockout , Nod1 Signaling Adaptor Protein/genetics , Signal Transduction/genetics
4.
Immunology ; 153(1): 21-30, 2018 01.
Article in English | MEDLINE | ID: mdl-28880992

ABSTRACT

Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma.


Subject(s)
Asthma/etiology , Immunity, Innate , Lymphocyte Subsets/immunology , Obesity/complications , Obesity/immunology , Adaptive Immunity , Adipose Tissue/immunology , Adipose Tissue/metabolism , Allergens/immunology , Animals , Asthma/metabolism , Biomarkers , Cytokines/metabolism , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Lymphocyte Activation , Lymphocyte Subsets/metabolism , Obesity/metabolism , Signal Transduction
6.
J Mycol Med ; 33(3): 101392, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37172543

ABSTRACT

Allergic bronchopulmonary aspergillosis (ABPA) is a rare disease characterized by a complex allergic inflammatory reaction of airways against Aspergillus affecting patients with chronic respiratory diseases (asthma, cystic fibrosis). Exacerbation is often the way to diagnose ABPA and marks its evolution by its recurrent character leading to cortico-requirement or long-term antifungal treatment. Early diagnosis allows treatment of ABPA at an initial stage, preventing recurrence of exacerbations and long-term complications, mainly represented by bronchiectasis. This review of the literature aims to present the current state of the art in terms of diagnosis and treatment of ABPA from a multidisciplinary perspective. As there is no clinical, biological nor radiological specific sign, diagnostic criteria are regularly revised. They are mainly based on the elevation of total and specific IgE against Aspergillus fumigatus and the presence of suggestive CT abnormalities such as mucoid impaction and consolidations. ABPA management includes eviction of mold and pharmacological therapy. Exacerbations are treated in first line with a moderate dose of oral corticosteroids. Azole antifungal agents represent an alternative for the treatment of exacerbations and are the preferential strategy to reduce the future risk of exacerbations and for corticosteroids sparing. Asthma biologics may be of interest; however, their place remains to be determined. Avoiding complications of ABPA while limiting the side effects of systemic drugs remains a major challenge of ABPA management. Several drugs, including new antifungals and asthma biologics, are currently being tested and may be useful in the future.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , Asthma , Biological Products , Humans , Aspergillosis, Allergic Bronchopulmonary/diagnosis , Aspergillosis, Allergic Bronchopulmonary/drug therapy , Aspergillus fumigatus , Adrenal Cortex Hormones/therapeutic use , Antifungal Agents/therapeutic use , Biological Products/therapeutic use
7.
Front Immunol ; 13: 928886, 2022.
Article in English | MEDLINE | ID: mdl-36189256

ABSTRACT

Asthma is an extremely prevalent chronic inflammatory disease of the airway where innate and adaptive immune systems participate collectively with epithelial and other structural cells to cause airway hyperresponsiveness, mucus overproduction, airway narrowing, and remodeling. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular innate immune sensors that detect microbe-associated molecular patterns and damage-associated molecular patterns, well-recognized for their central roles in the maintenance of tissue homeostasis and host defense against bacteria, viruses and fungi. In recent times, NLRs have been increasingly acknowledged as much more than innate sensors and have emerged also as relevant players in diseases classically defined by their adaptive immune responses such as asthma. In this review article, we discuss the current knowledge and recent developments about NLR expression, activation and function in relation to asthma and examine the potential interventions in NLR signaling as asthma immunomodulatory therapies.


Subject(s)
Asthma , Nod2 Signaling Adaptor Protein , Carrier Proteins , Humans , Immunity, Innate , Nucleotides/metabolism
8.
Front Physiol ; 12: 727806, 2021.
Article in English | MEDLINE | ID: mdl-34658913

ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.

SELECTION OF CITATIONS
SEARCH DETAIL