Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Allergy ; 78(2): 464-476, 2023 02.
Article in English | MEDLINE | ID: mdl-36070083

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic, food-driven allergic disease, characterized by eosinophil-rich inflammation in the esophagus. The histopathological and clinical features of EoE have been attributed to overproduction of the type 2 cytokines IL-4 and IL-13, which mediate profound alterations in the esophageal epithelium and neutralizing of their shared receptor component (IL-4Rα) with a human antibody drug (dupilumab) demonstrates clinical efficacy. Yet, the relative contribution of IL-4 and IL-13 and whether the type II IL-4 receptor (comprised of the IL-4Rα chain in association with IL-13Rα1) mediates this effect has not been determined. METHODS: Experimental EoE was induced in WT, Il13ra1-/- , and Krt14Cre /Il13ra1fl/fl mice by skin-sensitized using 4-ethoxymethylene-2-phenyl-2-oxazolin (OXA) followed by intraesophageal challenges. Esophageal histopathology was determined histologically. RNA was extracted and sequenced for transcriptome analysis and compared with human EoE RNAseq data. RESULTS: Induction of experimental EoE in mice lacking Il13ra1 and in vivo IL-13 antibody-based neutralization experiments blocked antigen-induced esophageal epithelial and lamina propria thickening, basal cell proliferation, eosinophilia, and tissue remodeling. In vivo targeted deletion of Il13ra1 in esophageal epithelial cells rendered mice protected from experimental EoE. Single-cell RNA sequencing analysis of human EoE biopsies revealed predominant expression of IL-13Rα1 in epithelial cells and that EoE signature genes correlated with IL-13 expression compared with IL-4. CONCLUSIONS: We demonstrate a definitive role for IL-13 signaling via IL-13Rα1 in EoE. These data provide mechanistic insights into the mode of action of current therapies in EoE and highlight the type II IL-4R as a future therapeutic target.


Subject(s)
Eosinophilic Esophagitis , Humans , Mice , Animals , Eosinophilic Esophagitis/pathology , Interleukin-13 Receptor alpha1 Subunit/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Interleukin-13/metabolism , Epithelial Cells/metabolism
2.
Curr Protoc ; 4(2): e993, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372429

ABSTRACT

Eosinophilic esophagitis (EoE) is an emerging chronic T helper type 2 (Th2)-associated, allergic, and immune-mediated disease, characterized histologically by eosinophil-predominant mucosal inflammation and clinically by esophageal dysfunction. Over the past years, the prevalence of EoE has dramatically increased globally. Until recently, most studies of EoE focused on using human biopsies, which are also used for diagnostic purposes, or esophageal epithelial cell lines, which led to major advances in the understanding of EoE. Despite this, a robust mouse model that mimics human disease is still crucial for both understanding disease pathogenesis and as a preclinical model for testing future therapeutics. Herein, we describe a highly reproducible and robust model of EoE that can be performed using wild-type mice by ear sensitization with oxazolone (OXA) followed by intraesophageal challenges. Experimental EoE elicited by OXA mimics the main histopathological features of human EoE, including intraepithelial eosinophilia, epithelial and lamina propria thickening, basal cell hyperplasia, and fibrosis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Induction of EoE in mice using oxazolone Support Protocol 1: Preparing the mouse esophagus for histological analysis Support Protocol 2: Assessment of epithelial and lamina propria thickness using H&E staining Support Protocol 3: Assessment of eosinophilic infiltration using anti-MBP and basal cell proliferation using anti-Ki-67 staining Support Protocol 4: Flow cytometry of mouse esophageal samples Support Protocol 5: ELISA on protein lysates of esophageal samples.


Subject(s)
Enteritis , Eosinophilia , Eosinophilic Esophagitis , Gastritis , Humans , Mice , Animals , Eosinophilic Esophagitis/diagnosis , Eosinophilic Esophagitis/pathology , Oxazolone , Eosinophils/metabolism , Eosinophils/pathology
3.
Front Immunol ; 13: 1041660, 2022.
Article in English | MEDLINE | ID: mdl-36389786

ABSTRACT

Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis, host defense and cancer. Although eosinophils have been studied mostly in the context of Type 2 inflammatory responses, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Notably, both Type 1- and Type 2 inflammatory environments are characterized by tissue damage and cell death. Collectively, this raises the possibility that eosinophils can interact with apoptotic cells, which can alter eosinophil activation in the inflammatory milieu. Herein, we demonstrate that eosinophils can bind and engulf apoptotic cells. We further show that exposure of eosinophils to apoptotic cells induces marked transcriptional changes in eosinophils, which polarize eosinophils towards an anti-inflammatory phenotype that is associated with wound healing and cell migration. Using an unbiased RNA sequencing approach, we demonstrate that apoptotic cells suppress the inflammatory responses of eosinophils that were activated with IFN-γ + E. coli (e.g., Type 1 eosinophils) and augment IL-4-induced eosinophil activation (e.g., Type 2 eosinophils). These data contribute to the growing understanding regarding the heterogeneity of eosinophil activation patterns and highlight apoptotic cells as potential regulators of eosinophil polarization.


Subject(s)
Eosinophils , Escherichia coli , Mice , Animals , Eosinophils/metabolism , Escherichia coli/metabolism , Cytokines/metabolism , Interferon-gamma/metabolism , Apoptosis
4.
Front Immunol ; 12: 802839, 2021.
Article in English | MEDLINE | ID: mdl-34970274

ABSTRACT

Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis to host defense and cancer. Eosinophils have been studied mostly in the context of Type 2 inflammatory responses such as those found in allergy. Nonetheless, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Recent data suggest that the pleotropic roles of eosinophils are due to heterogeneous responses to environmental cues. Despite this, the activation profile of eosinophils, in response to various stimuli is yet to be defined. To better understand the transcriptional spectrum of eosinophil activation, we exposed eosinophils to Type 1 (e.g. IFN-γ, E. coli) vs. Type 2 (e.g. IL-4) conditions and subjected them to global RNA sequencing. Our analyses show that IL-4, IFN-γ, E. coli and IFN-γ in the presence of E. coli (IFN-γ/E. coli)-stimulated eosinophils acquire distinct transcriptional profiles, which polarize them towards what we termed Type 1 and Type 2 eosinophils. Bioinformatics analyses using Gene Ontology based on biological processes revealed that different stimuli induced distinct pathways in eosinophils. These pathways were confirmed using functional assays by assessing cytokine/chemokine release (i.e. CXCL9, CCL24, TNF-α and IL-6) from eosinophils following activation. In addition, analysis of cell surface markers highlighted CD101 and CD274 as potential cell surface markers that distinguish between Type 1 and Type 2 eosinophils, respectively. Finally, the transcriptome signature of Type 1 eosinophils resembled that of eosinophils that were obtained from mice with experimental colitis whereas the transcriptome signature of Type 2 eosinophils resembled that of eosinophils from experimental asthma. Our data demonstrate that eosinophils are polarized to distinct "Type 1" and "Type 2" phenotypes following distinct stimulations. These findings provide fundamental knowledge regarding the heterogeneity of eosinophils and support the presence of transcriptional differences between Type 1 and Type 2 cells that are likely reflected by their pleotropic activities in diverse disease settings.


Subject(s)
Eosinophils/immunology , Eosinophils/metabolism , Gene Expression Regulation , Transcriptome , Animals , Biomarkers , Cell Plasticity/genetics , Cell Plasticity/immunology , Computational Biology/methods , Cytokines/genetics , Cytokines/metabolism , Escherichia coli/immunology , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Immune System Phenomena , Immunity , Inflammation Mediators , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL