Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Neurosci ; 39(3): 472-484, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30478032

ABSTRACT

Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and ß-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, using Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENT Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent coexpression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Corticotropin-Releasing Hormone/physiology , Neurons/physiology , Parabrachial Nucleus/drug effects , Receptors, Adrenergic, alpha-2/drug effects , Septal Nuclei/drug effects , Animals , Female , Gene Expression/drug effects , Genes, fos/drug effects , Guanfacine/pharmacology , Male , Mice , Mice, Inbred C57BL , Norepinephrine/pharmacology , Ovariectomy , Patch-Clamp Techniques , Protein Kinase C-delta/drug effects , Receptors, G-Protein-Coupled/drug effects , Restraint, Physical , Stress, Psychological/physiopathology
2.
Alcohol Clin Exp Res ; 39(11): 2154-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26503065

ABSTRACT

BACKGROUND: Ethanol (EtOH) modulation of central amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin-releasing factor (CRF) receptor (CRFR) system. Previous work has predominantly focused on EtOH × CRF interactions on the CeA GABA circuitry; however, our laboratory recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine whether EtOH modulates CeA glutamate transmission via activation of CRF signaling. METHODS: The effects of EtOH on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRF(CeAhDTR) ) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRF(DTA) mice) ablated CRF neurons throughout the central nervous system, as assessed by quantitative reverse transcriptase polymerase chain reaction quantification of CRF mRNA. RESULTS: Acute bath application of EtOH significantly increased sEPSC frequency in a concentration-dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRFR1 and CRFR2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, EtOH did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of EtOH to enhance CeA sEPSC frequency was not altered in CRF(CeAhDTR) mice despite a ~78% reduction in CeA CRF cell counts. The ability of EtOH to enhance CeA sEPSC frequency was also not altered in the CRF(DTA) mice despite a 3-fold reduction in CRF mRNA levels. CONCLUSIONS: These findings demonstrate that EtOH enhances spontaneous glutamatergic transmission in the CeA via a CRFR-dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF.


Subject(s)
Central Amygdaloid Nucleus/drug effects , Central Amygdaloid Nucleus/metabolism , Ethanol/pharmacology , Glutamic Acid/metabolism , Receptors, Corticotropin-Releasing Hormone/metabolism , Synaptic Transmission/drug effects , Animals , Dose-Response Relationship, Drug , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Receptors, Corticotropin-Releasing Hormone/agonists , Synaptic Transmission/physiology
3.
BMC Health Serv Res ; 13: 503, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24295150

ABSTRACT

BACKGROUND: Training is a critical part of health information technology implementations, but little emphasis is placed on post-implementation training to support day-to-day activities. The goal of this study was to evaluate the impact of post-implementation training on key electronic health record activities. METHODS: Based on feedback from providers and requests for technical support, we developed two classes designed to improve providers' effectiveness with the electronic health record. Training took place at Kaiser Permanente, Mid-Atlantic States. The classes focused on managing patient-level information using problem lists and medication lists, as well as efficient documentation and chart review. Both classes used the blended learning method, integrating concrete scenarios, hands-on exercises and take-home materials to reinforce class concepts. To evaluate training effectiveness, we used a case-control study with a 1:4 match on pre-training performance. We measured the usage rate of two key electronic health record functions (problem list and medication list management) for six months before and after training. Change scores were compared using the Wilcoxon sign rank test. RESULTS: 36 participants and 144 non-participants were included in the training evaluation. Training participants were more likely to manage both medication lists and problem lists after training. Class material is now being incorporated into an enterprise-wide multi-modal training program available to all providers at Kaiser Permanente in the Mid-Atlantic States. CONCLUSIONS: Ongoing information technology training is well-received by healthcare providers, who expressed a clear preference for additional training. Training improved use of two important electronic health record features that are included as part of the Meaningful Use criteria.


Subject(s)
Electronic Health Records , Teaching/methods , Drug Therapy , Education, Medical/methods , Education, Medical/standards , Electronic Health Records/organization & administration , Humans , Program Development , Teaching/standards
4.
J Pers Med ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34945792

ABSTRACT

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the NF1 gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.1466A>G; p.Y489C (Y489C) results in the creation of an intragenic cryptic splice site, aberrant splicing, a 62 base pair deletion from the mRNA, and subsequent frameshift. We investigated the ability of phosphorodiamidate morpholino oligomers (PMOs) to mask this variant on the RNA level, thus restoring normal splicing. To model this variant, we have developed a human iPS cell line homozygous for the variant using CRISPR/Cas9. PMOs were designed to be 25 base pairs long, and to cover the mutation site so it could not be read by splicing machinery. Results from our in vitro testing showed restoration of normal splicing in the RNA and restoration of full length neurofibromin protein. In addition, we observe the restoration of neurofibromin functionality through GTP-Ras and pERK/ERK testing. The results from this study demonstrate the ability of a PMO to correct splicing errors in NF1 variants at the RNA level, which could open the door for splicing corrections for other variants in this and a variety of diseases.

5.
Article in English | MEDLINE | ID: mdl-11988478

ABSTRACT

The recent report of the crystal structure of rhodopsin provides insights concerning structure-activity relationships in visual pigments and related G protein-coupled receptors (GPCRs). The seven transmembrane helices of rhodopsin are interrupted or kinked at multiple sites. An extensive network of interhelical interactions stabilizes the ground state of the receptor. The ligand-binding pocket of rhodopsin is remarkably compact, and several chromophore-protein interactions were not predicted from mutagenesis or spectroscopic studies. The helix movement model of receptor activation, which likely applies to all GPCRs of the rhodopsin family, is supported by several structural elements that suggest how light-induced conformational changes in the ligand-binding pocket are transmitted to the cytoplasmic surface. The cytoplasmic domain of the receptor includes a helical domain extending from the seventh transmembrane segment parallel to the bilayer surface. The cytoplasmic surface appears to be approximately large enough to bind to the transducin heterotrimer in a one-to-one complex. The structural basis for several unique biophysical properties of rhodopsin, including its extremely low dark noise level and high quantum efficiency, can now be addressed using a combination of structural biology and various spectroscopic methods. Future high-resolution structural studies of rhodopsin and other GPCRs will form the basis to elucidate the detailed molecular mechanism of GPCR-mediated signal transduction.


Subject(s)
Rhodopsin/chemistry , Rhodopsin/physiology , Amino Acid Sequence , Animals , Crystallography, X-Ray , Humans , Ligands , Molecular Sequence Data , Protein Binding , Retina/metabolism , Signal Transduction , Structure-Activity Relationship , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL