Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(34): 20397-20403, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32788358

ABSTRACT

Organic frameworks (OFs) offer a novel strategy for assembling organic semiconductors into robust networks that facilitate transport, especially the covalent organic frameworks (COFs). However, poor electrical conductivity through covalent bonds and insolubility of COFs limit their practical applications in organic electronics. It is known that the two-dimensional intralayer π∙∙∙π transfer dominates transport in organic semiconductors. However, because of extremely labile inherent features of noncovalent π∙∙∙π interaction, direct construction of robust frameworks via noncovalent π∙∙∙π interaction is a difficult task. Toward this goal, we report a robust noncovalent π∙∙∙π interaction-stacked organic framework, namely πOF, consisting of a permanent three-dimensional porous structure that is held together by pure intralayer noncovalent π∙∙∙π interactions. The elaborate porous structure, with a 1.69-nm supramaximal micropore, is composed of fully conjugated rigid aromatic tetragonal-disphenoid-shaped molecules with four identical platforms. πOF shows excellent thermostability and high recyclability and exhibits self-healing properties by which the parent porosity is recovered upon solvent annealing at room temperature. Taking advantage of the long-range π∙∙∙π interaction, we demonstrate remarkable transport properties of πOF in an organic-field-effect transistor, and the mobility displays relative superiority over the traditional COFs. These promising results position πOF in a direction toward porous and yet conductive materials for high-performance organic electronics.

2.
J Am Chem Soc ; 144(26): 11564-11568, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35728272

ABSTRACT

Aromatic C-H activation in alkylarenes is a key step for the synthesis of functionalized organic molecules from simple hydrocarbon precursors. Known examples of such C-H activations often yield mixtures of products resulting from activation of the least hindered C-H bonds. Here we report highly selective ortho-C-H activation in alkylarenes by simple iridium complexes. We demonstrate that the capacity of the alkyl substituent to override the typical preference of metal-mediated C-H activation for the least hindered aromatic C-H bonds results from transient insertion of iridium into the benzylic C-H bond. This enables fast iridium insertion into the ortho-C-H bond, followed by regeneration of the benzylic C-H bond by reductive elimination. Bulkier alkyl substituents increase the ortho selectivity. The described chemistry represents a conceptually new alternative to existing approaches for aromatic C-H bond activation.


Subject(s)
Iridium , Iridium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL