Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 20(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138331

ABSTRACT

Damage significantly influences response of a strain sensor only if it occurs in the proximity of the sensor. Thus, two-dimensional (2D) sensing sheets covering large areas offer reliable early-stage damage detection for structural health monitoring (SHM) applications. This paper presents a scalable sensing sheet design consisting of a dense array of thin-film resistive strain sensors. The sensing sheet is fabricated using flexible printed circuit board (Flex-PCB) manufacturing process which enables low-cost and high-volume sensors that can cover large areas. The lab tests on an aluminum beam showed the sheet has a gauge factor of 2.1 and has a low drift of 1.5 µ ϵ / d a y . The field test on a pedestrian bridge showed the sheet is sensitive enough to track strain induced by the bridge's temperature variations. The strain measured by the sheet had a root-mean-square (RMS) error of 7 µ ϵ r m s compared to a reference strain on the surface, extrapolated from fiber-optic sensors embedded within the bridge structure. The field tests on an existing crack showed that the sensing sheet can track the early-stage damage growth, where it sensed 600 µ ϵ peak strain, whereas the nearby sensors on a damage-free surface did not observe significant strain change.


Subject(s)
Monitoring, Physiologic/instrumentation , Temperature
2.
Sensors (Basel) ; 18(6)2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29895727

ABSTRACT

Sensing sheets based on Large Area Electronics (LAE) and Integrated Circuits (ICs) are novel sensors designed to enable reliable early-stage detection of local unusual structural behaviors. Such a device consists of a dense array of strain sensors, patterned onto a flexible polyimide substrate along with associated electronics. Previous tests performed on steel specimens equipped with sensing sheet prototypes and subjected to fatigue cracking pointed to a potential issue: individual sensors that were on or near a crack would immediately be damaged by the crack, thereby rendering them useless in assessing the size of the crack opening or to monitor future crack growth. In these tests, a stiff adhesive was used to bond the sensing sheet prototype to the steel specimen. Such an adhesive provided excellent strain transfer, but it also caused premature failure of individual sensors within the sheet. Therefore, the aim of this paper is to identify an alternative adhesive that survives minor damage, yet provides strain transfer that is sufficient for reliable early-stage crack detection. A sensor sheet prototype is then calibrated for use with the selected adhesive.

3.
Opt Express ; 21(6): 7196-201, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23546103

ABSTRACT

Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.


Subject(s)
Electric Power Supplies , Solar Energy , Surface Plasmon Resonance/instrumentation , Electronics , Electrons , Equipment Design , Equipment Failure Analysis
4.
IEEE Trans Biomed Circuits Syst ; 13(6): 1264-1276, 2019 12.
Article in English | MEDLINE | ID: mdl-31634845

ABSTRACT

Tactile sensing requires form-fitting and dense sensor arrays over large-areas. Hybrid systems, combining Large-Area Electronics (LAE) and silicon-CMOS ICs to respectively provide diverse sensing and high-performance computation/control, enable a platform for such sensing. A key challenge is that hybrid systems require a large number of interfaces between the LAE and CMOS domains, particularly as the number of sensors scales. This paper presents an architecture that exploits the attribute of signal sparsity, commonly exhibited in large-scale tactile-sensing applications, to reduce the interfacing complexity to a level set by the sparsity rather than the number of sensors. This enhances scalability compared to sequential-scanning and active-matrix approaches. The architecture implements compressed sensing via thin-film-transistor (TFT) switches, and is demonstrated in a force-sensing system with 20 force sensors, a TFT die (with 161 ZnO TFTs) per sensor, and a custom CMOS IC for system readout and control. Acquisition error of 0.7 k[Formula: see text] is achieved over a 100 k Ω-20 k Ω sensing range, at energy and rate of 2.46  µ J/frame and 31 fps.


Subject(s)
Biosensing Techniques/instrumentation , Semiconductors , Skin Physiological Phenomena , Touch/physiology , Transistors, Electronic , Algorithms , Biosensing Techniques/methods , Humans , Silicon/chemistry , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL