Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Biol Evol ; 30(4): 918-37, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23300254

ABSTRACT

Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.


Subject(s)
Cultural Characteristics , Growth Disorders/genetics , Population Density , Social Behavior , Africa, Central , Bayes Theorem , Cluster Analysis , Female , Genes, Mitochondrial , Genes, X-Linked , Genes, Y-Linked , Genetic Variation , Genetics, Population , Haplotypes , Human Migration , Humans , Male , Microsatellite Repeats , Models, Genetic , Phylogeography , Sex Factors
2.
Hum Biol ; 84(1): 11-43, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22452427

ABSTRACT

In this article I am illustrating the linguistic diversity of African Pygmy populations in order to better address their anthropological diversity and history. I am also introducing a new method, based on the analysis of specialized vocabulary, to reconstruct the substratum of some languages they speak. I show that Pygmy identity is not based on their languages, which have often been borrowed from neighboring non-Pygmy farmer communities with whom each Pygmy group is linked. Understanding the nature of this partnership, quite variable in history, is essential to addressing Pygmy languages, identity, and history. Finally, I show that only a multidisciplinary approach is likely to push forward the understanding of African Pygmy societies as genetic, archeological, anthropological, and ethnological evidence suggest.


Subject(s)
Agriculture/statistics & numerical data , Black People/statistics & numerical data , Cultural Diversity , Ethnicity/genetics , Language , Africa , Anthropology, Cultural , Black People/genetics , Emigration and Immigration/statistics & numerical data , Ethnicity/statistics & numerical data , Genetics, Population/statistics & numerical data , Humans
3.
PLoS Genet ; 5(4): e1000448, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19360089

ABSTRACT

The transition from hunting and gathering to farming involved a major cultural innovation that has spread rapidly over most of the globe in the last ten millennia. In sub-Saharan Africa, hunter-gatherers have begun to shift toward an agriculture-based lifestyle over the last 5,000 years. Only a few populations still base their mode of subsistence on hunting and gathering. The Pygmies are considered to be the largest group of mobile hunter-gatherers of Africa. They dwell in equatorial rainforests and are characterized by their short mean stature. However, little is known about the chronology of the demographic events-size changes, population splits, and gene flow--ultimately giving rise to contemporary Pygmy (Western and Eastern) groups and neighboring agricultural populations. We studied the branching history of Pygmy hunter-gatherers and agricultural populations from Africa and estimated separation times and gene flow between these populations. We resequenced 24 independent noncoding regions across the genome, corresponding to a total of approximately 33 kb per individual, in 236 samples from seven Pygmy and five agricultural populations dispersed over the African continent. We used simulation-based inference to identify the historical model best fitting our data. The model identified included the early divergence of the ancestors of Pygmy hunter-gatherers and farming populations approximately 60,000 years ago, followed by a split of the Pygmies' ancestors into the Western and Eastern Pygmy groups approximately 20,000 years ago. Our findings increase knowledge of the history of the peopling of the African continent in a region lacking archaeological data. An appreciation of the demographic and adaptive history of African populations with different modes of subsistence should improve our understanding of the influence of human lifestyles on genome diversity.


Subject(s)
Black People/genetics , Africa South of the Sahara , Agriculture/history , Black People/history , Evolution, Molecular , Gene Flow , Genetic Variation , History, Ancient , Humans , Models, Genetic , Population Dynamics , Sequence Analysis, DNA
4.
Am J Phys Anthropol ; 145(3): 390-401, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21541921

ABSTRACT

Central African Pygmy populations are known to be the shortest human populations worldwide. Many evolutionary hypotheses have been proposed to explain this short stature: adaptation to food limitations, climate, forest density, or high mortality rates. However, such hypotheses are difficult to test given the lack of long-term surveys and demographic data. Whether the short stature observed nowadays in African Pygmy populations as compared to their Non-Pygmy neighbors is determined by genetic factors remains widely unknown. Here, we study a uniquely large new anthropometrical dataset comprising more than 1,000 individuals from 10 Central African Pygmy and neighboring Non-Pygmy populations, categorized as such based on cultural criteria rather than height. We show that climate, or forest density may not play a major role in the difference in adult stature between existing Pygmies and Non-Pygmies, without ruling out the hypothesis that such factors played an important evolutionary role in the past. Furthermore, we analyzed the relationship between stature and neutral genetic variation in a subset of 213 individuals and found that the Pygmy individuals' stature was significantly positively correlated with levels of genetic similarity with the Non-Pygmy gene-pool for both men and women. Overall, we show that a Pygmy individual exhibiting a high level of genetic admixture with the neighboring Non-Pygmies is likely to be taller. These results show for the first time that the major morphological difference in stature found between Central African Pygmy and Non-Pygmy populations is likely determined by genetic factors.


Subject(s)
Black People/genetics , Body Height/genetics , Genetics, Population , Adult , Africa, Central/epidemiology , Analysis of Variance , Case-Control Studies , Cluster Analysis , Computational Biology , Female , Geography , Humans , Male
5.
Proc Natl Acad Sci U S A ; 105(5): 1596-601, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18216239

ABSTRACT

Two groups of populations with completely different lifestyles-the Pygmy hunter-gatherers and the Bantu-speaking farmers-coexist in Central Africa. We investigated the origins of these two groups and the interactions between them, by analyzing mtDNA variation in 1,404 individuals from 20 farming populations and 9 Pygmy populations from Central Africa, with the aim of shedding light on one of the most fascinating cultural transitions in human evolution (the transition from hunting and gathering to agriculture). Our data indicate that this region was colonized gradually, with an initial L1c-rich ancestral population ultimately giving rise to current-day farmers, who display various L1c clades, and to Pygmies, in whom L1c1a is the only surviving clade. Detailed phylogenetic analysis of complete mtDNA sequences for L1c1a showed this clade to be autochthonous to Central Africa, with its most recent branches shared between farmers and Pygmies. Coalescence analyses revealed that these two groups arose through a complex evolutionary process characterized by (i) initial divergence of the ancestors of contemporary Pygmies from an ancestral Central African population no more than approximately 70,000 years ago, (ii) a period of isolation between the two groups, accounting for their phenotypic differences, (iii) long-standing asymmetric maternal gene flow from Pygmies to the ancestors of the farming populations, beginning no more than approximately 40,000 years ago and persisting until a few thousand years ago, and (iv) enrichment of the maternal gene pool of the ancestors of the farming populations by the arrival and/or subsequent demographic expansion of L0a, L2, and L3 carriers.


Subject(s)
Black People/genetics , Gene Flow , Genes, Mitochondrial/genetics , Genetic Variation , Population/genetics , Africa, Central , Base Sequence , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Female , Haploidy , Humans , Male , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
6.
Biol Lett ; 6(6): 858-61, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-20427330

ABSTRACT

Hunter-gatherer Pygmies from Central Africa are described as being extremely mobile. Using neutral genetic markers and population genetics theory, we explored the dispersal behaviour of the Baka Pygmies from Cameroon, one of the largest Pygmy populations in Central Africa. We found a strong correlation between genetic and geographical distances: a pattern of isolation by distance arising from limited parent-offspring dispersal. Our study suggests that mobile hunter-gatherers do not necessarily disperse over wide geographical areas.


Subject(s)
Black People/genetics , Ethnicity/genetics , Adult , Cameroon , Emigration and Immigration , Female , Humans , Male , Microsatellite Repeats , Population Dynamics
7.
Curr Biol ; 19(4): 312-8, 2009 Feb 24.
Article in English | MEDLINE | ID: mdl-19200724

ABSTRACT

Central Africa is currently peopled by numerous sedentary agriculturalist populations neighboring the largest group of mobile hunter-gatherers, the Pygmies [1-3]. Although archeological remains attest to Homo sapiens' presence in the Congo Basin for at least 30,000 years, the demographic history of these groups, including divergence and admixture, remains widely unknown [4-6]. Moreover, it is still debated whether common history or convergent adaptation to a forest environment resulted in the short stature characterizing the pygmies [2, 7]. We genotyped 604 individuals at 28 autosomal tetranucleotide microsatellite loci in 12 nonpygmy and 9 neighboring pygmy populations. We found a high level of genetic heterogeneity among Western Central African pygmies, as well as evidence of heterogeneous levels of asymmetrical gene flow from nonpygmies to pygmies, consistent with the variable sociocultural barriers against intermarriages. Using approximate Bayesian computation (ABC) methods [8], we compared several historical scenarios. The most likely points toward a unique ancestral pygmy population that diversified approximately 2800 years ago, contemporarily with the Neolithic expansion of nonpygmy agriculturalists [9, 10]. Our results show that recent isolation, genetic drift, and heterogeneous admixture enabled a rapid and substantial genetic differentiation among Western Central African pygmies. Such an admixture pattern is consistent with the various sociocultural behaviors related to intermariages between pygmies and nonpygmies.


Subject(s)
Behavior/physiology , Black People/genetics , Genetic Variation , Genetics, Population , Africa, Central , Africa, Western , Bayes Theorem , Genetic Drift , Genotype , Humans , Phenotype , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL