Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Respir Cell Mol Biol ; 55(2): 213-24, 2016 08.
Article in English | MEDLINE | ID: mdl-26909801

ABSTRACT

Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.


Subject(s)
Axonemal Dyneins/metabolism , Cilia/metabolism , Dyneins/metabolism , Lung/metabolism , Base Sequence , Cilia/ultrastructure , Dyneins/ultrastructure , Homozygote , Humans , Kartagener Syndrome/genetics , Mutation/genetics , Protein Transport
2.
Am J Hum Genet ; 93(4): 711-20, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24055112

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.


Subject(s)
Antigens, Surface/genetics , Cilia/genetics , Ciliary Motility Disorders/genetics , Dyneins/genetics , GTP-Binding Proteins/genetics , Kartagener Syndrome/genetics , Mutation/genetics , Adolescent , Adult , Animals , Axoneme/genetics , Child , Child, Preschool , Cytoplasm/genetics , Epithelial Cells/metabolism , Exome , Female , Humans , Infant , Male , Pedigree , Phenotype , Young Adult , Zebrafish
3.
Respiration ; 90(6): 443-50, 2015.
Article in English | MEDLINE | ID: mdl-26473738

ABSTRACT

BACKGROUND: A decreased level of vascular endothelial growth factor (VEGF) was previously described in bronchoalveolar lavage fluid (BALF) of adults with interstitial lung diseases (ILD) due to bronchial epithelial cell apoptosis and its proteolytic degradation. Elevated intrapulmonary ferritin was produced by alveolar cells that promoted oxidative injury in such patients. OBJECTIVES: In this study, we analyzed the concentrations of VEGF and ferritin in BALF samples of ILD children and studied the relationship between their levels and the degree of inflammation. METHODS: BALF and serum concentration of VEGF as well as ferritin and albumin in BALF samples were measured using enzyme-linked immunosorbent assay in children with idiopathic interstitial pneumonia (n = 16), hypersensitivity pneumonitis (n = 11) and idiopathic pulmonary hemosiderosis (n = 3). Twenty-four age- and gender-matched subjects with suspicious foreign body aspiration served as a control group. RESULTS: VEGF per albumin levels in BALF were significantly decreased in ILD children compared to controls (1,075 [784-1,415] pg/mg albumin vs. 2,741 [1,131-4,660] pg/mg albumin, p = 0.0008). These values showed a significant negative correlation with inflammatory markers of total immune cell count in BALF (r = -0.411, p = 0.002) and serum C-reactive protein (r = -0.367, p = 0.006). Although serum VEGF was augmented in ILD children versus controls, no difference was observed among the ILD groups. In addition, BALF ferritin/albumin level (688 [188-1,571] ng/mg albumin vs. 256 [178-350] ng/mg albumin, p = 0.022) was significantly higher than normal in ILD individuals, especially in idiopathic pulmonary hemosiderosis. CONCLUSION: Depressed VEGF and increased ferritin in BALF may reflect the severity of chronic pulmonary inflammation in altered respiratory epithelium of childhood ILD.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Ferritins/analysis , Lung Diseases, Interstitial/metabolism , Vascular Endothelial Growth Factor A/analysis , Adolescent , Albumins/analysis , C-Reactive Protein/analysis , Case-Control Studies , Cell Count , Child , Child, Preschool , Female , Hemosiderosis/metabolism , Humans , Lung Diseases/metabolism , Lymphocyte Count , Macrophages, Alveolar/metabolism , Male , Neutrophils/metabolism
4.
Am J Hum Genet ; 83(5): 547-58, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18950741

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by chronic destructive airway disease and randomization of left/right body asymmetry. Males often have reduced fertility due to impaired sperm tail function. The complex PCD phenotype results from dysfunction of cilia of the airways and the embryonic node and the structurally related motile sperm flagella. This is associated with underlying ultrastructural defects that frequently involve the outer dynein arm (ODA) complexes that generate cilia and flagella movement. Applying a positional and functional candidate-gene approach, we identified homozygous loss-of-function DNAI2 mutations (IVS11+1G > A) in four individuals from a family with PCD and ODA defects. Further mutational screening of 105 unrelated PCD families detected two distinct homozygous mutations, including a nonsense (c.787C > T) and a splicing mutation (IVS3-3T > G) resulting in out-of-frame transcripts. Analysis of protein expression of the ODA intermediate chain DNAI2 showed sublocalization throughout respiratory cilia. Electron microscopy showed that mutant respiratory cells from these patients lacked DNAI2 protein expression and exhibited ODA defects. High-resolution immunofluorescence imaging demonstrated absence of the ODA heavy chains DNAH5 and DNAH9 from all DNAI2 mutant ciliary axonemes. In addition, we demonstrated complete or distal absence of DNAI2 from ciliary axonemes in respiratory cells of patients with mutations in genes encoding the ODA chains DNAH5 and DNAI1, respectively. Thus, DNAI2 and DNAH5 mutations affect assembly of proximal and distal ODA complexes, whereas DNAI1 mutations mainly disrupt assembly of proximal ODA complexes.


Subject(s)
Cilia/genetics , Dyneins/genetics , Dyneins/ultrastructure , Kartagener Syndrome/genetics , Mutation , Adolescent , Adult , Aged , Alleles , Child , Child, Preschool , Cilia/ultrastructure , Consanguinity , DNA Mutational Analysis , Dyneins/chemistry , Exons , Female , Flagella/genetics , Gene Frequency , Genetic Linkage , Humans , Male , Middle Aged , Pedigree , Polymorphism, Single Nucleotide , RNA Splicing , Sequence Analysis, DNA , Young Adult
5.
Nat Genet ; 43(1): 79-84, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21131974

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.


Subject(s)
Ciliary Motility Disorders/genetics , Proteins/genetics , Animals , Cilia/genetics , Dyneins/genetics , Humans , Kartagener Syndrome/genetics , Mice , Mice, Inbred Strains , Mutation , Proteins/physiology , Situs Inversus/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL