Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Neuroimage ; 241: 118430, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34314848

ABSTRACT

PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Data Analysis , Databases, Factual/standards , Magnetic Resonance Imaging/standards , Magnetic Resonance Spectroscopy/standards , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods
2.
Cereb Cortex ; 30(6): 3644-3654, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32108220

ABSTRACT

Hypnosis is the oldest form of Western psychotherapy and a powerful evidence-based treatment for numerous disorders. Hypnotizability is variable between individuals; however, it is a stable trait throughout adulthood, suggesting that neurophysiological factors may underlie hypnotic responsiveness. One brain region of particular interest in functional neuroimaging studies of hypnotizability is the anterior cingulate cortex (ACC). Here, we examined the relationships between the neurochemicals, GABA, and glutamate, in the ACC and hypnotizability in healthy individuals. Participants underwent a magnetic resonance imaging (MRI) session, whereby T1-weighted anatomical and MEGA-PRESS spectroscopy scans were acquired. Voxel placement over the ACC was guided by a quantitative meta-analysis of functional neuroimaging studies of hypnosis. Hypnotizability was assessed using the Hypnotic Induction Profile (HIP), and self-report questionnaires to assess absorption (TAS), dissociation (DES), and negative affect were completed. ACC GABA concentration was positively associated with HIP scores such that the higher the GABA concentration, the more hypnotizable an individual. An exploratory analysis of questionnaire subscales revealed a negative relationship between glutamate and the absorption and imaginative involvement subscale of the DES. These results provide a putative neurobiological basis for individual differences in hypnotizability and can inform our understanding of treatment response to this growing psychotherapeutic tool.


Subject(s)
Glutamic Acid/metabolism , Gyrus Cinguli/metabolism , Hypnosis , Individuality , gamma-Aminobutyric Acid/metabolism , Adult , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Surveys and Questionnaires , Young Adult
3.
Magn Reson Med ; 79(1): 41-47, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28370458

ABSTRACT

PURPOSE: The most common γ-aminobutyric-acid (GABA) editing approach, MEGA-PRESS, uses J-editing to measure GABA distinct from larger overlapping metabolites, but suffers contamination from coedited macromolecules (MMs) comprising 40 to 60% of the observed signal. MEGA-SPECIAL is an alternative method with better MM suppression, but is not widely used primarily because of its relatively poor spatial localization. Our goal was to develop an improved MM-suppressed GABA editing sequence at 3 Tesla. METHODS: We modified a single-voxel MEGA-SPECIAL sequence with an oscillating readout gradient for improved spatial localization, and used very selective 30-ms editing pulses for improved suppression of coedited MMs. RESULTS: Simulation and in vivo experiments confirmed excellent MM suppression, insensitive to the range of B0 frequency drifts typically encountered in vivo. Both intersubject and intrasubject studies showed that MMs, when suppressed by the improved MEGA-SPECIAL method, contributed approximately 40% to the corresponding MEGA-PRESS measurements. From the intersubject study, the coefficient of variation for GABA+/Cre (MEGA-PRESS) was 11.2% versus 7% for GABA/Cre (improved MEGA-SPECIAL), demonstrating significantly reduced variance (P = 0.005), likely coming from coedited MMs. CONCLUSIONS: This improved MEGA-SPECIAL sequence provides unbiased GABA measurements with reduced variance as compared with conventional MEGA-PRESS. This approach is also relatively insensitive to the range of B0 drifts typically observed in in vivo human studies. Magn Reson Med 79:41-47, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Spectroscopy/methods , gamma-Aminobutyric Acid/chemistry , Algorithms , Brain/diagnostic imaging , Brain Mapping/methods , Computer Simulation , Humans , Macromolecular Substances , Normal Distribution , Oscillometry , Phantoms, Imaging , Radio Waves , Reproducibility of Results
4.
J Neurosci Methods ; 392: 109853, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37031764

ABSTRACT

BACKGROUND: Currently, magnetic resonance spectroscopy (MRS) is dependent on the investigative team to manually prescribe, or demarcate, the desired tissue volume-of-interest. The need for a new method to automate precise voxel placements is warranted to improve the utility and interpretability of MRS data. NEW METHOD: We propose and validate robust and real-time methods to automate MRS voxel placement using functionally defined coordinates within the prefrontal cortex. Data were collected and analyzed using two independent prospective studies: 1) two independent imaging days with each consisting of a multi-session sandwich design (MRS data only collected on one of the days determined based on scan time) and 2) a longitudinal design. Participants with fibromyalgia syndrome (N = 50) and major depressive disorder (N = 35) underwent neuroimaging. MRS acquisitions were acquired at 3-tesla. Evaluation of the reproducibility of spatial location and tissue segmentation was assessed for: 1) manual, 2) semi-automated, and 3) automated voxel prescription approaches RESULTS: Variability of voxel grey and white matter tissue composition was reduced using automated placement protocols. Spatially, post- to pre-voxel center-of-gravity distance was reduced and voxel overlap increased significantly across datasets using automated compared to manual procedures COMPARISON WITH EXISTING METHODS: Manual prescription, the current standard in the field, can produce inconsistent data across repeated acquisitions. Using automated voxel placement, we found reduced variability and more consistent voxel placement across multiple acquisitions CONCLUSIONS: These results demonstrate the within subject reliability and reproducibility of a method for reducing variability introduced by spatial inconsistencies during MRS acquisitions. The proposed method is a meaningful advance toward improved consistency of MRS data in neuroscience and can be utilized for multi-session and longitudinal studies.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results , Prospective Studies , Magnetic Resonance Spectroscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL