Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Immunol ; 21(1): 75-85, 2020 01.
Article in English | MEDLINE | ID: mdl-31844326

ABSTRACT

Regulatory T (Treg) cells accumulate into tumors, hindering the success of cancer immunotherapy. Yet, therapeutic targeting of Treg cells shows limited efficacy or leads to autoimmunity. The molecular mechanisms that guide Treg cell stability in tumors remain elusive. In the present study, we identify a cell-intrinsic role of the alarmin interleukin (IL)-33 in the functional stability of Treg cells. Specifically, IL-33-deficient Treg cells demonstrated attenuated suppressive properties in vivo and facilitated tumor regression in a suppression of tumorigenicity 2 receptor (ST2) (IL-33 receptor)-independent fashion. On activation, Il33-/- Treg cells exhibited epigenetic re-programming with increased chromatin accessibility of the Ifng locus, leading to elevated interferon (IFN)-γ production in a nuclear factor (NF)-κB-T-bet-dependent manner. IFN-γ was essential for Treg cell defective function because its ablation restored Il33-/- Treg cell-suppressive properties. Importantly, genetic ablation of Il33 potentiated the therapeutic effect of immunotherapy. Our findings reveal a new and therapeutically important intrinsic role of IL-33 in Treg cell stability in cancer.


Subject(s)
Interferon-gamma/immunology , Interleukin-33/immunology , Melanoma, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Escape/immunology , Animals , Cell Line, Tumor , Interferon-gamma/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism
2.
Cell ; 155(3): 499-502, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243008

ABSTRACT

Many coregulated genes assemble in multigene complexes via stochastic inter- and intrachromosomal interactions. In this issue, Fanucchi et al. report that chromatin loop formation governs hierarchical cotranscription within a multigene complex.


Subject(s)
Chromosomes , Gene Expression Regulation , Genetic Techniques , Single-Cell Analysis , Transcription, Genetic , Humans
3.
BMC Genomics ; 24(1): 207, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072752

ABSTRACT

BACKGROUND: Monocytes -key regulators of the innate immune response- are actively involved in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel compounds that might serve as monocyte-directed targeted therapies in SLE. RESULTS: We performed mRNA sequencing in monocytes from 15 patients with active SLE and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Leveraging the drug repurposing platforms iLINCS, CLUE and L1000CDS2, we identified perturbagens capable of reversing the SLE monocyte signature. We identified transcription factors and microRNAs (miRNAs) that regulate the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases, respectively. A gene regulatory network, integrating implicated transcription factors and miRNAs was constructed, and drugs targeting central components of the network were retrieved from the DGIDb database. Inhibitors of the NF-κB pathway, compounds targeting the heat shock protein 90 (HSP90), as well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted to efficiently counteract the aberrant monocyte gene signature in SLE. An additional analysis was conducted, to enhance the specificity of our drug repurposing approach on monocytes, using the iLINCS, CLUE and L1000CDS2 platforms on publicly available datasets from circulating B-lymphocytes, CD4+ and CD8+ T-cells, derived from SLE patients. Through this approach we identified, small molecule compounds, that could potentially affect more selectively the transcriptome of SLE monocytes, such as, certain NF-κB pathway inhibitors, Pim-1 and SYK kinase inhibitors. Furthermore, according to our network-based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent potential drug candidates in SLE. CONCLUSIONS: Application of two independent - a transcriptome-reversal and a network-based -drug repurposing strategies uncovered novel agents that might remedy transcriptional disturbances of monocytes in SLE.


Subject(s)
Lupus Erythematosus, Systemic , MicroRNAs , Humans , Monocytes/metabolism , Transcriptome , NF-kappa B/metabolism , Drug Repositioning , CD8-Positive T-Lymphocytes/metabolism , MicroRNAs/metabolism , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/genetics
4.
Clin Immunol ; 255: 109765, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37678715

ABSTRACT

Peripheral blood monocytes propagate inflammation in systemic lupus erythematosus (SLE). Three major populations of monocytes have been recognized namely classical (CM), intermediate (IM) and non-classical monocytes (NCM). Herein, we performed a comprehensive transcriptomic, proteomic and functional characterization of the three peripheral monocytic subsets from active SLE patients and healthy individuals. Our data demonstrate extensive molecular disruptions in circulating SLE NCM, characterized by enhanced inflammatory features such as deregulated DNA repair, cell cycle and heightened IFN signaling combined with differentiation and developmental cues. Enhanced DNA damage, elevated expression of p53, G0 arrest of cell cycle and increased autophagy stress the differentiation potential of NCM in SLE. This immunogenic profile is associated with an activated macrophage phenotype of NCM exhibiting M1 characteristics in the circulation, fueling the inflammatory response. Together, these findings identify circulating SLE NCM as a pathogenic cell type in the disease that could represent an additional therapeutic target.

5.
Curr Rheumatol Rep ; 25(10): 183-191, 2023 10.
Article in English | MEDLINE | ID: mdl-37452914

ABSTRACT

PURPOSE OF REVIEW: Discuss the prognostic significance of kidney flares in patients with lupus nephritis, associated risk factors, and possible preventative strategies. RECENT FINDINGS: Recently performed clinical trials and observational cohort studies underscore the high frequency of relapses of kidney disease, following initial response, in patients with proliferative and/or membranous lupus nephritis. Analysis of hard disease outcomes such as progression to chronic kidney disease or end-stage kidney disease, coupled with histological findings from repeat kidney biopsy studies, have drawn attention to the importance of renal function preservation that should be pursued as early as lupus nephritis is diagnosed. In this respect, non-randomized and randomized evidence have suggested a number of factors associated with reduced risk of renal flares such as attaining a very low level of proteinuria (< 700-800 mg/24 h by 12 months), using mycophenolate over azathioprine, adding belimumab to standard therapy, maintaining immunosuppressive/biological treatment for at least 3 to 5 years, and using hydroxychloroquine. Other factors that warrant further clarification include serological activity and the use of repeat kidney biopsy to guide the intensity and duration of treatment in selected cases. The results from ongoing innovative studies integrating kidney histological and clinical outcomes, together with an expanding spectrum of therapies in lupus nephritis, are expected to facilitate individual medical care and long-term disease and patient prognosis.


Subject(s)
Lupus Nephritis , Humans , Lupus Nephritis/diagnosis , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Azathioprine/therapeutic use , Kidney/pathology , Risk Factors
6.
Proc Natl Acad Sci U S A ; 117(22): 12269-12280, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32409602

ABSTRACT

In multiple sclerosis (MS), Th17 cells are critical drivers of autoimmune central nervous system (CNS) inflammation and demyelination. Th17 cells exhibit functional heterogeneity fostering both pathogenic and nonpathogenic, tissue-protective functions. Still, the factors that control Th17 pathogenicity remain incompletely defined. Here, using experimental autoimmune encephalomyelitis, an established mouse MS model, we report that therapeutic administration of activin-A ameliorates disease severity and alleviates CNS immunopathology and demyelination, associated with decreased activation of Th17 cells. In fact, activin-A signaling through activin-like kinase-4 receptor represses pathogenic transcriptional programs in Th17-polarized cells, while it enhances antiinflammatory gene modules. Whole-genome profiling and in vivo functional studies revealed that activation of the ATP-depleting CD39 and CD73 ectonucleotidases is essential for activin-A-induced suppression of the pathogenic signature and the encephalitogenic functions of Th17 cells. Mechanistically, the aryl hydrocarbon receptor, along with STAT3 and c-Maf, are recruited to promoter elements on Entpd1 and Nt5e (encoding CD39 and CD73, respectively) and other antiinflammatory genes, and control their expression in Th17 cells in response to activin-A. Notably, we show that activin-A negatively regulates the metabolic sensor, hypoxia-inducible factor-1α, and key inflammatory proteins linked to pathogenic Th17 cell states. Of translational relevance, we demonstrate that activin-A is induced in the CNS of individuals with MS and restrains human Th17 cell responses. These findings uncover activin-A as a critical controller of Th17 cell pathogenicity that can be targeted for the suppression of autoimmune CNS inflammation.


Subject(s)
5'-Nucleotidase/metabolism , Activins/pharmacology , Antigens, CD/metabolism , Apyrase/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/prevention & control , Multiple Sclerosis/immunology , Th17 Cells/immunology , Animals , Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , GPI-Linked Proteins/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Th17 Cells/metabolism
7.
Ann Rheum Dis ; 81(10): 1409-1419, 2022 10.
Article in English | MEDLINE | ID: mdl-35906002

ABSTRACT

OBJECTIVES: Patients with lupus nephritis (LN) are in urgent need for early diagnosis and therapeutic interventions targeting aberrant molecular pathways enriched in affected kidneys. METHODS: We used mRNA-sequencing in effector (spleen) and target (kidneys, brain) tissues from lupus and control mice at sequential time points, and in the blood from 367 individuals (261 systemic lupus erythematosus (SLE) patients and 106 healthy individuals). Comparative cross-tissue and cross-species analyses were performed. The human dataset was split into training and validation sets and machine learning was applied to build LN predictive models. RESULTS: In murine SLE, we defined a kidney-specific molecular signature, as well as a molecular signature that underlies transition from preclinical to overt disease and encompasses pathways linked to metabolism, innate immune system and neutrophil degranulation. The murine kidney transcriptome partially mirrors the blood transcriptome of patients with LN with 11 key transcription factors regulating the cross-species active LN molecular signature. Integrated protein-to-protein interaction and drug prediction analyses identified the kinases TRRAP, AKT2, CDK16 and SCYL1 as putative targets of these factors and capable of reversing the LN signature. Using murine kidney-specific genes as disease predictors and machine-learning training of the human RNA-sequencing dataset, we developed and validated a peripheral blood-based algorithm that discriminates LN patients from normal individuals (based on 18 genes) and non-LN SLE patients (based on 20 genes) with excellent sensitivity and specificity (area under the curve range from 0.80 to 0.99). CONCLUSIONS: Machine-learning analysis of a large whole blood RNA-sequencing dataset of SLE patients using human orthologs of mouse kidney-specific genes can be used for early, non-invasive diagnosis and therapeutic targeting of LN. The kidney-specific gene predictors may facilitate prevention and early intervention trials.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Adaptor Proteins, Vesicular Transport/genetics , Animals , DNA-Binding Proteins/genetics , Early Diagnosis , Gene Expression Profiling , Humans , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/genetics , Lupus Nephritis/diagnosis , Lupus Nephritis/drug therapy , Lupus Nephritis/genetics , Mice , RNA
8.
Ann Rheum Dis ; 79(2): 242-253, 2020 02.
Article in English | MEDLINE | ID: mdl-31780527

ABSTRACT

OBJECTIVES: Haematopoietic stem and progenitor cells (HSPCs) are multipotent cells giving rise to both myeloid and lymphoid cell lineages. We reasoned that the aberrancies of immune cells in systemic lupus erythematosus (SLE) could be traced back to HSPCs. METHODS: A global gene expression map of bone marrow (BM)-derived HSPCs was completed by RNA sequencing followed by pathway and enrichment analysis. The cell cycle status and apoptosis status of HSPCs were assessed by flow cytometry, while DNA damage was assessed via immunofluorescence. RESULTS: Transcriptomic analysis of Lin-Sca-1+c-Kit+ haematopoietic progenitors from diseased lupus mice demonstrated a strong myeloid signature with expanded frequencies of common myeloid progenitors (CMPs)-but not of common lymphoid progenitors-reminiscent of a 'trained immunity' signature. CMP profiling revealed an intense transcriptome reprogramming with suppression of granulocytic regulators indicative of a differentiation arrest with downregulation trend of major regulators such as Cebpe, Cebpd and Csf3r, and disturbed myelopoiesis. Despite the differentiation arrest, frequencies of BM neutrophils were markedly increased in diseased mice, suggesting an alternative granulopoiesis pathway. In patients with SLE with severe disease, haematopoietic progenitor cells (CD34+) demonstrated enhanced proliferation, cell differentiation and transcriptional activation of cytokines and chemokines that drive differentiation towards myelopoiesis, thus mirroring the murine data. CONCLUSIONS: Aberrancies of immune cells in SLE can be traced back to the BM HSPCs. Priming of HSPCs and aberrant regulation of myelopoiesis may contribute to inflammation and risk of flare. TRIAL REGISTRATION NUMBER: 4948/19-07-2016.


Subject(s)
Cellular Reprogramming/immunology , Hematopoietic Stem Cells/immunology , Lupus Erythematosus, Systemic/immunology , Myeloid Cells/immunology , Transcriptome/immunology , Animals , Apoptosis/immunology , CCAAT-Enhancer-Binding Protein-delta/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Cycle/immunology , Chromosome Mapping , DNA Damage , Flow Cytometry , Fluorescent Antibody Technique , Granulocyte Colony-Stimulating Factor/metabolism , Granulocytes/immunology , Lymphocytes/immunology , Mice
9.
Proc Natl Acad Sci U S A ; 114(14): E2891-E2900, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28320933

ABSTRACT

Type 1 regulatory T (Tr1) cells play a pivotal role in restraining human T-cell responses toward environmental allergens and protecting against allergic diseases. Still, the precise molecular cues that underlie their transcriptional and functional specification remain elusive. Here, we show that the cytokine activin-A instructs the generation of CD4+ T cells that express the Tr1-cell-associated molecules IL-10, inducible T-Cell costimulator (ICOS), lymphocyte activation gene 3 protein (LAG-3), and CD49b, and exert strongly suppressive functions toward allergic responses induced by naive and in vivo-primed human T helper 2 cells. Moreover, mechanistic studies reveal that activin-A signaling induces the activation of the transcription factor interferon regulatory factor (IRF4), which, along with the environmental sensor aryl hydrocarbon receptor, forms a multipartite transcriptional complex that binds in IL-10 and ICOS promoter elements and controls gene expression in human CD4+ T cells. In fact, IRF4 silencing abrogates activin-A-driven IL10 and ICOS up-regulation and impairs the suppressive functions of human activin-A-induced Tr1-like (act-A-iTr1) cells. Importantly, using a humanized mouse model of allergic asthma, we demonstrate that adoptive transfer of human act-A-iTr1 cells, both in preventive and therapeutic protocols, confers significant protection against cardinal asthma manifestations, including pulmonary inflammation. Overall, our findings uncover an activin-A-induced IRF4-aryl hydrocarbon receptor (AhR)-dependent transcriptional network, which generates suppressive human Tr1 cells that may be harnessed for the control of allergic diseases.


Subject(s)
Activins/metabolism , Asthma/prevention & control , Basic Helix-Loop-Helix Transcription Factors/metabolism , Interferon Regulatory Factors/metabolism , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes, Regulatory/immunology , Activins/pharmacology , Animals , Asthma/immunology , Asthma/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/drug effects , Disease Models, Animal , Gene Expression Regulation , Humans , Hypersensitivity/metabolism , Hypersensitivity/prevention & control , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Mice, SCID , Promoter Regions, Genetic , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation
10.
J Allergy Clin Immunol ; 141(2): 671-684.e7, 2018 02.
Article in English | MEDLINE | ID: mdl-28579377

ABSTRACT

BACKGROUND: Previously, we demonstrated that regulatory T (Treg) cells induced by the cytokine activin-A suppress TH2-mediated allergic responses and linked airway disease. Still, the effects of activin-A-induced regulatory T (Act-A-iTreg) cells on the regulation of dendritic cell (DC)-driven allergic inflammation remain elusive. OBJECTIVE: Here we investigated whether Act-A-iTreg cells can modulate DC responses and endow them with enhanced tolerogenic functions. METHODS: Using adoptive cell transfer studies in mouse models of allergic airway disease, we examined the effects of Act-A-iTreg cells on DC phenotype, maturation status, and TH2 cell priming potential. Genome-wide gene expression profiling characterized the transcriptional networks induced in tolerogenic DCs by Act-A-iTreg cells. The ability of DCs conditioned by Act-A-iTreg cells (Act-A-iTreg cell-modified DCs) to protect against experimental asthma, and the mechanisms involved were also explored. RESULTS: Act-A-iTreg cell-modified DCs exhibited a significantly impaired capacity to uptake allergen and stimulate naive and TH2 effector responses on allergen stimulation in vivo accompanied by markedly attenuated inflammatory cytokine release in response to LPS. Gene-profiling studies revealed that Act-A-iTreg cells dampened crucial TH2-skewing transcriptional networks in DCs. Administration of Act-A-iTreg cell-modified DCs ameliorated cardinal asthma manifestations in preventive and therapeutic protocols through generation of strongly suppressive forkhead box P3+ Treg cells. Finally, programed death protein 1/programmed death ligand 1 signaling pathways were essential in potentiating the generation of DCs with tolerogenic properties by Act-A-iTreg cells. CONCLUSION: Our studies reveal that Act-A-iTreg cells instruct the generation of a highly effective immunoregulatory circuit encompassing tolerogenic DCs and forkhead box P3+ Treg cells that could be targeted for the design of novel immunotherapies for allergic disorders.


Subject(s)
Activins/immunology , Asthma/prevention & control , Dendritic Cells/immunology , Signal Transduction/immunology , Activins/genetics , Animals , Asthma/genetics , Asthma/immunology , Asthma/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Dendritic Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/genetics , T-Lymphocytes, Regulatory , Th2 Cells/immunology , Th2 Cells/pathology , Transcription, Genetic/genetics , Transcription, Genetic/immunology
11.
Nephrol Dial Transplant ; 31(10): 1676-86, 2016 10.
Article in English | MEDLINE | ID: mdl-26546590

ABSTRACT

BACKGROUND: Aberrancies in gene expression in immune effector cells and in end-organs are implicated in lupus pathogenesis. To gain insights into the mechanisms of tissue injury, we profiled the expression of micro-RNAs in inflammatory kidney lesions of human lupus nephritis (LN). METHODS: Kidney specimens were from patients with active proliferative, membranous or mixed LN and unaffected control tissue. Micro-RNAs were quantified by TaqMan Low Density Arrays. Bioinformatics was employed to predict gene targets, gene networks and perturbed signaling pathways. Results were validated by transfection studies (luciferase assay, real-time PCR) and in murine LN. Protein expression was determined by immunoblotting and immunohistochemistry. RESULTS: Twenty-four micro-RNAs were dysregulated (9 up-regulated, 15 down-regulated) in human LN compared with control renal tissue. Their predicted gene targets participated in pathways associated with TGF-ß, kinases, NF-κB, HNF4A, Wnt/ß-catenin, STAT3 and IL-4. miR-422a showed the highest upregulation (17-fold) in active LN and correlated with fibrinoid necrosis lesions (ß = 0.63, P = 0.002). In transfection studies, miR-422a was found to directly target kallikrein-related peptidase 4 (KLK4) mRNA. Concordantly, KLK4 mRNA was significantly reduced in the kidneys of human and murine LN and correlated inversely with miR-422a levels. Immunohistochemistry confirmed reduced KLK4 protein expression in renal mesangial and tubular epithelial cells in human and murine LN. CONCLUSIONS: KLK4, a serine esterase with putative renoprotective properties, is down-regulated by miR-422a in LN kidney suggesting that, in addition to immune activation, local factors may be implicated in the disease.


Subject(s)
Gene Expression Regulation , Kallikreins/metabolism , Kidney/metabolism , Lupus Nephritis/genetics , MicroRNAs/genetics , Animals , Biopsy , Case-Control Studies , Gene Expression Profiling , Humans , Kallikreins/genetics , Kidney/pathology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lupus Nephritis/surgery , Mice , Signal Transduction , Up-Regulation
12.
Front Immunol ; 15: 1383358, 2024.
Article in English | MEDLINE | ID: mdl-38779657

ABSTRACT

Introduction: Immune cells that contribute to the pathogenesis of systemic lupus erythematosus (SLE) derive from adult hematopoietic stem and progenitor cells (HSPCs) within the bone marrow (BM). For this reason, we reasoned that fundamental abnormalities in SLE can be traced to a BM-derived HSPC inflammatory signature. Methods: BM samples from four SLE patients, six healthy controls, and two umbilical cord blood (CB) samples were used. CD34+ cells were isolated from BM and CB samples, and single-cell RNA-sequencing was performed. Results: A total of 426 cells and 24,473 genes were used in the analysis. Clustering analysis resulted in seven distinct clusters of cell types. Mutually exclusive markers, which were characteristic of each cell type, were identified. We identified three HSPC subpopulations, one of which consisted of proliferating cells (MKI67 expressing cells), one T-like, one B-like, and two myeloid-like progenitor subpopulations. Differential expression analysis revealed i) cell cycle-associated signatures, in healthy BM of HSPC clusters 3 and 4 when compared with CB, and ii) interferon (IFN) signatures in SLE BM of HSPC clusters 3 and 4 and myeloid-like progenitor cluster 5 when compared with healthy controls. The IFN signature in SLE appeared to be deregulated following TF regulatory network analysis and differential alternative splicing analysis between SLE and healthy controls in HSPC subpopulations. Discussion: This study revealed both quantitative-as evidenced by decreased numbers of non-proliferating early progenitors-and qualitative differences-characterized by an IFN signature in SLE, which is known to drive loss of function and depletion of HSPCs. Chronic IFN exposure affects early hematopoietic progenitors in SLE, which may account for the immune aberrancies and the cytopenias in SLE.


Subject(s)
Gene Expression Profiling , Hematopoietic Stem Cells , Interferons , Lupus Erythematosus, Systemic , Single-Cell Analysis , Transcriptome , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Hematopoietic Stem Cells/metabolism , Interferons/metabolism , Interferons/genetics , Female , Adult , Cellular Reprogramming/genetics , Male
13.
Lupus Sci Med ; 11(1)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38471723

ABSTRACT

OBJECTIVES: In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS: Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through ß-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS: Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through ß-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS: These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , beta-Glucans , Humans , Animals , Mice , Hematopoiesis , Hematopoietic Stem Cells
14.
Front Immunol ; 14: 1203848, 2023.
Article in English | MEDLINE | ID: mdl-37475860

ABSTRACT

Objective: A blood-based biomarker is needed to assess lupus nephritis (LN) disease activity, minimizing the need for invasive kidney biopsies. Long non-coding RNAs (lncRNAs) are known to regulate gene expression, appear to be stable in human plasma, and can serve as non-invasive biomarkers. Methods: Transcriptomic data of whole blood samples from 74 LN patients and 20 healthy subjects (HC) were analyzed to identify differentially expressed (DE) lncRNAs associated with quiescent disease and flares. Weighted gene co-expression network analysis (WGCNA) was performed to uncover lncRNAs with a central role (hub lncRNAs) in regulating key biological processes that drive LN disease activity. The association of hub lncRNAs with disease activity was validated using RT-qPCR on an independent cohort of 15 LN patients and 9 HC. cis- and trans-targets of validated lncRNAs were explored in silico to examine potential mechanisms of their action. Results: There were 444 DE lncRNAs associated with quiescent disease and 6 DE lncRNAs associated with flares (FDR <0.05). WGCNA highlighted IFN signaling and B-cell activity/adaptive immunity as the most significant processes contributing to nephritis activity. Four disease-activity-associated lncRNAs, namely, NRIR, KLHDC7B-DT, MIR600HG, and FAM30A, were detected as hub genes and validated in an independent cohort. NRIR and KLHDC7B-DT emerged as potential key regulators of IFN-mediated processes. Network analysis suggests that FAM30A and MIR600HG are likely to play a central role in the regulation of B-cells in LN through cis-regulation effects and a competing endogenous RNA mechanism affecting immunoglobulin gene expression and the IFN-λ pathway. Conclusions: The expression of lncRNAs NRIR, KLHDC7B-DT, FAM30A, and MIR600HG were associated with disease activity and could be further explored as blood-based biomarkers and potential liquid biopsy on LN.


Subject(s)
Lupus Nephritis , RNA, Long Noncoding , Humans , Lupus Nephritis/diagnosis , Lupus Nephritis/genetics , Biomarkers , Gene Expression Profiling , Liquid Biopsy
15.
PLoS One ; 18(7): e0288005, 2023.
Article in English | MEDLINE | ID: mdl-37432970

ABSTRACT

Generation of induced pluripotent stem cells from specialized cell types provides an excellent model to study how cells maintain their stability, and how they can change identity, especially in the context of disease. Previous studies have shown that chromatin safeguards cell identity by acting as a barrier to reprogramming. We investigated mechanisms by which the histone macroH2A variants inhibit reprogramming and discovered that they work as gate keepers of the mesenchymal cell state by blocking epithelial transition, a step required for reprogramming of mouse fibroblasts. More specifically, we found that individual macroH2A variants regulate the expression of defined sets of genes, whose overall function is to stabilize the mesenchymal gene expression program, thus resisting reprogramming. We identified a novel gene network (MSCN, mesenchymal network) composed of 63 macroH2A-regulated genes related to extracellular matrix, cell membrane, signaling and the transcriptional regulators Id2 and Snai2, all of which function as guardians of the mesenchymal phenotype. ChIP-seq and KD experiments revealed a macroH2A variant-specific combinatorial targeting of the genes reconstructing the MSCN, thus generating robustness in gene expression programs to resist cellular reprogramming.


Subject(s)
Cellular Reprogramming , Chromatin , Animals , Mice , Chromatin/genetics , Cell Membrane , Cellular Reprogramming/genetics , Chromatin Immunoprecipitation Sequencing , Extracellular Matrix
16.
Front Immunol ; 14: 1257321, 2023.
Article in English | MEDLINE | ID: mdl-38022524

ABSTRACT

Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g., T cells). Their pathogenesis involves a plethora of intracellular pathways. The translation of the research findings on CIDs molecular mechanisms into effective treatments is challenging and may explain the low remission rates despite modern targeted therapies. Modelling CID-related causal interactions as networks allows us to tackle the complexity at a systems level and improve our understanding of the interplay of key pathways. Here we report the construction, description, and initial applications of the SYSCID map (https://syscid.elixir-luxembourg.org/), a mechanistic causal interaction network covering the molecular crosstalk between IBD, RA and SLE. We demonstrate that the map serves as an interactive, graphical review of IBD, RA and SLE molecular mechanisms, and helps to understand the complexity of omics data. Examples of such application are illustrated using transcriptome data from time-series gene expression profiles following anti-TNF treatment and data from genome-wide associations studies that enable us to suggest potential effects to altered pathways and propose possible mechanistic biomarkers of treatment response.


Subject(s)
Arthritis, Rheumatoid , Inflammatory Bowel Diseases , Lupus Erythematosus, Systemic , Humans , Tumor Necrosis Factor Inhibitors , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/genetics , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/genetics , Treatment Outcome , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/genetics
17.
Front Immunol ; 14: 1072598, 2023.
Article in English | MEDLINE | ID: mdl-37051253

ABSTRACT

Introduction: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) present with a complex phenotype and are associated with high mortality and multi-organ involvement. We sought to define the transcriptional landscape and molecular endotypes of AAVs and compare it to systemic lupus erythematosus (SLE). Methods: We performed whole blood mRNA sequencing from 30 patients with AAV (granulomatosis with polyangiitis/GPA and microscopic polyangiitis/MPA) combined with functional enrichment and network analysis for aberrant pathways. Key genes and pathways were validated in an independent cohort of 18 AAV patients. Co-expression network and hierarchical clustering analysis, identified molecular endotypes. Multi-level transcriptional overlap analysis to SLE was based on our published data from 142 patients. Results: We report here that "Pan-vasculitis" signature contained 1,982 differentially expressed genes, enriched in leukocyte differentiation, cytokine signaling, type I and type II IFN signaling and aberrant B-T cell immunity. Active disease was characterized by signatures linked to cell cycle checkpoints and metabolism pathways, whereas ANCA-positive patients exhibited a humoral immunity transcriptional fingerprint. Differential expression analysis of GPA and MPA yielded an IFN-g pathway (in addition to a type I IFN) in the former and aberrant expression of genes related to autophagy and mRNA splicing in the latter. Unsupervised molecular taxonomy analysis revealed four endotypes with neutrophil degranulation, aberrant metabolism and B-cell responses as potential mechanistic drivers. Transcriptional perturbations and molecular heterogeneity were more pronounced in SLE. Molecular analysis and data-driven clustering of AAV uncovered distinct transcriptional pathways that could be exploited for targeted therapy. Discussion: We conclude that transcriptomic analysis of AAV reveals distinct endotypes and molecular pathways that could be targeted for therapy. The AAV transcriptome is more homogenous and less fragmented compared to the SLE which may account for its superior rates of response to therapy.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Lupus Erythematosus, Systemic , Humans , Antibodies, Antineutrophil Cytoplasmic , Lupus Erythematosus, Systemic/genetics , Genomics , RNA, Messenger
18.
J Biol Chem ; 286(44): 38768-38782, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21896491

ABSTRACT

The transcription factor NF-κB is a critical regulator of immune responses. To determine how NF-κB builds transcriptional control networks, we need to obtain a topographic map of the factor bound to the genome and correlate it with global gene expression. We used a ChIP cloning technique and identified novel NF-κB target genes in response to virus infection. We discovered that most of the NF-κB-bound genomic sites deviate from the consensus and are located away from conventional promoter regions. Remarkably, we identified a novel abundant NF-κB-binding site residing in specialized Alu-repetitive elements having the potential for long range transcription regulation, thus suggesting that in addition to its known role, NF-κB has a primate-specific function and a role in human evolution. By combining these data with global gene expression profiling of virus-infected cells, we found that most of the sites bound by NF-κB in the human genome do not correlate with changes in gene expression of the nearby genes and they do not appear to function in the context of synthetic promoters. These results demonstrate that repetitive elements interspersed in the human genome function as common target sites for transcription factors and may play an important role in expanding the repertoire of binding sites to engage new genes into regulatory networks.


Subject(s)
Alu Elements/genetics , NF-kappa B/metabolism , Animals , Binding Sites , Chromatin/chemistry , Chromatin Immunoprecipitation , DNA/chemistry , DNA/genetics , Genome , Genome, Human , HeLa Cells , Humans , Mice , Oligonucleotide Array Sequence Analysis , Primates , Protein Binding , Transcription, Genetic
19.
Biomedicines ; 10(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36359340

ABSTRACT

Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.

20.
Arthritis Res Ther ; 24(1): 206, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008868

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease for which prediction of long-term prognosis from disease's outset is not clinically feasible. The importance of immunoglobulin G (IgG) and its Fc N-glycosylation in inflammation is well-known and studies described its relevance for several autoimmune diseases, including RA. Herein we assessed the association between IgG N-glycoforms and disease prognosis at 2 years in an early inflammatory arthritis cohort. METHODS: Sera from 118 patients with early inflammatory arthritis naïve to treatment sampled at baseline were used to obtain IgG Fc glycopeptides, which were then analyzed in a subclass-specific manner by liquid chromatography coupled to mass spectrometry (LC-MS). Patients were prospectively followed and a favorable prognosis at 2 years was assessed by a combined index as remission or low disease activity (DAS28 < 3.2) and normal functionality (HAQ ≤ 0.25) while on treatment with conventional synthetic DMARDs and never used biologic DMARDs. RESULTS: We observed a significant association between high levels of IgG2/3 Fc galactosylation (effect 0.627 and adjusted p value 0.036 for the fully galactosylated glycoform H5N4F1; effect -0.551 and adjusted p value 0.04963 for the agalactosylated H3N4F1) and favorable outcome after 2 years of treatment. The inclusion of IgG glycoprofiling in a multivariate analysis to predict the outcome (with HAQ, DAS28, RF, and ACPA included in the model) did not improve the prognostic performance of the model. CONCLUSION: Pending confirmation of these findings in larger cohorts, IgG glycosylation levels could be used as a prognostic marker in early arthritis, to overcome the limitations of the current prognostic tools.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Glycosylation , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G
SELECTION OF CITATIONS
SEARCH DETAIL