Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Cell ; 173(1): 260-274.e25, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551266

ABSTRACT

Protein degradation plays important roles in biological processes and is tightly regulated. Further, targeted proteolysis is an emerging research tool and therapeutic strategy. However, proteome-wide technologies to investigate the causes and consequences of protein degradation in biological systems are lacking. We developed "multiplexed proteome dynamics profiling" (mPDP), a mass-spectrometry-based approach combining dynamic-SILAC labeling with isobaric mass tagging for multiplexed analysis of protein degradation and synthesis. In three proof-of-concept studies, we uncover different responses induced by the bromodomain inhibitor JQ1 versus a JQ1 proteolysis targeting chimera; we elucidate distinct modes of action of estrogen receptor modulators; and we comprehensively classify HSP90 clients based on their requirement for HSP90 constitutively or during synthesis, demonstrating that constitutive HSP90 clients have lower thermal stability than non-clients, have higher affinity for the chaperone, vary between cell types, and change upon external stimuli. These findings highlight the potential of mPDP to identify dynamically controlled degradation mechanisms in cellular systems.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Proteome/analysis , Proteomics/methods , Azepines/chemistry , Azepines/metabolism , Azepines/pharmacology , Cell Line , Chromatography, High Pressure Liquid , Cluster Analysis , Estradiol/pharmacology , Humans , Isotope Labeling , Jurkat Cells , MCF-7 Cells , Neoplasm Proteins/metabolism , Proteins/antagonists & inhibitors , Proteins/metabolism , Proteolysis/drug effects , Receptors, Estrogen/metabolism , Tandem Mass Spectrometry , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
2.
Nature ; 579(7799): 409-414, 2020 03.
Article in English | MEDLINE | ID: mdl-32188942

ABSTRACT

Plants are essential for life and are extremely diverse organisms with unique molecular capabilities1. Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.


Subject(s)
Arabidopsis Proteins/analysis , Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Mass Spectrometry , Proteome/analysis , Proteome/chemistry , Proteomics , Amino Acid Motifs , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Databases, Protein , Datasets as Topic , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Open Reading Frames , Organ Specificity , Phosphoproteins/analysis , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphorylation , Proteome/biosynthesis , Proteome/genetics , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcriptome
3.
Mol Syst Biol ; 20(4): 458-474, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454145

ABSTRACT

Complex disease phenotypes often span multiple molecular processes. Functional characterization of these processes can shed light on disease mechanisms and drug effects. Thermal Proteome Profiling (TPP) is a mass-spectrometry (MS) based technique assessing changes in thermal protein stability that can serve as proxies of functional protein changes. These unique insights of TPP can complement those obtained by other omics technologies. Here, we show how TPP can be integrated with phosphoproteomics and transcriptomics in a network-based approach using COSMOS, a multi-omics integration framework, to provide an integrated view of transcription factors, kinases and proteins with altered thermal stability. This allowed us to recover consequences of Poly (ADP-ribose) polymerase (PARP) inhibition in ovarian cancer cells on cell cycle and DNA damage response as well as interferon and hippo signaling. We found that TPP offers a complementary perspective to other omics data modalities, and that its integration allowed us to obtain a more complete molecular overview of PARP inhibition. We anticipate that this strategy can be used to integrate functional proteomics with other omics to study molecular processes.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Proteome , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Multiomics , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Proteomics/methods
5.
Nat Methods ; 18(1): 84-91, 2021 01.
Article in English | MEDLINE | ID: mdl-33398190

ABSTRACT

Numerous drugs and endogenous ligands bind to cell surface receptors leading to modulation of downstream signaling cascades and frequently to adaptation of the plasma membrane proteome. In-depth analysis of dynamic processes at the cell surface is challenging due to biochemical properties and low abundances of plasma membrane proteins. Here we introduce cell surface thermal proteome profiling for the comprehensive characterization of ligand-induced changes in protein abundances and thermal stabilities at the plasma membrane. We demonstrate drug binding to extracellular receptors and transporters, discover stimulation-dependent remodeling of T cell receptor complexes and describe a competition-based approach to measure target engagement of G-protein-coupled receptor antagonists. Remodeling of the plasma membrane proteome in response to treatment with the TGFB receptor inhibitor SB431542 leads to partial internalization of the monocarboxylate transporters MCT1/3 explaining the antimetastatic effects of the drug.


Subject(s)
Benzamides/pharmacology , Cell Membrane/metabolism , Dioxoles/pharmacology , Membrane Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Receptors, Antigen, T-Cell/metabolism , Cell Membrane/drug effects , Humans , K562 Cells , Ligands , Membrane Proteins/analysis , Membrane Proteins/drug effects , Protein Binding , Proteome/analysis , Proteome/drug effects , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Temperature , U937 Cells
6.
Nat Chem Biol ; 18(10): 1104-1114, 2022 10.
Article in English | MEDLINE | ID: mdl-35864335

ABSTRACT

Reversible protein phosphorylation is an important mechanism for regulating (dis)assembly of biomolecular condensates. However, condensate-specific phosphosites remain largely unknown, thereby limiting our understanding of the underlying mechanisms. Here, we combine solubility proteome profiling with phosphoproteomics to quantitatively map several hundred phosphosites enriched in either soluble or condensate-bound protein subpopulations, including a subset of phosphosites modulating protein-RNA interactions. We show that multi-phosphorylation of the C-terminal disordered segment of heteronuclear ribonucleoprotein A1 (HNRNPA1), a key RNA-splicing factor, reduces its ability to locate to nuclear clusters. For nucleophosmin 1 (NPM1), an essential nucleolar protein, we show that phosphorylation of S254 and S260 is crucial for lowering its partitioning to the nucleolus and additional phosphorylation of distal sites enhances its retention in the nucleoplasm. These phosphorylation events decrease RNA and protein interactions of NPM1 to regulate its condensation. Our dataset is a rich resource for systematically uncovering the phosphoregulation of biomolecular condensates.


Subject(s)
Biomolecular Condensates , Proteome , Nuclear Proteins/metabolism , Phosphorylation , Proteome/metabolism , RNA/metabolism , RNA Splicing Factors/metabolism , Ribonucleoproteins/metabolism
7.
Nature ; 564(7736): 439-443, 2018 12.
Article in English | MEDLINE | ID: mdl-30405246

ABSTRACT

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Drug Design , Membrane Proteins/agonists , Animals , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Humans , Ligands , Membrane Proteins/immunology , Mice , Models, Molecular , Nucleotides, Cyclic/metabolism
8.
Mol Cell Proteomics ; 21(6): 100241, 2022 06.
Article in English | MEDLINE | ID: mdl-35525403

ABSTRACT

Mass spectrometry-based secretomics approaches frequently utilize serum-free culture conditions to circumvent serum-induced interference and to increase analytical depth. However, this can negatively affect a wide range of cellular functions and cell viability. These effects become particularly apparent when investigating transcriptionally regulated secretion events and feedback-loops in response to perturbations that require 48 h or more to fully manifest. We present an "interval-based" secretomics workflow, which determines protein secretion rates in short serum-free time windows. Relative quantification using tandem mass tags enables precise monitoring of time-dependent changes. We applied this approach to determine temporal profiles of protein secretion in the hepatocyte model cell lines HepG2 and HepaRG after stimulation of the acute-phase response (APR) by the cytokines IL1b and IL6. While the popular hepatocarcinoma cell line HepG2 showed an incomplete APR, secretion patterns derived from differentiated HepaRG cells recapitulated the expected APR more comprehensively. For several APR response proteins, substantial secretion was only observed after 72 h, a time window at which cell fitness is substantially impaired under serum-free cell culture conditions. The interval-based secretomics approach enabled the first comprehensive analysis of time-dependent secretion of liver cell models in response to these proinflammatory cytokines. The extended time range facilitated the observation of distinct chronological phases and cytokine-dependent secretion phenotypes of the APR. IL1b directed the APR toward pathogen defense over three distinct phases-chemotaxis, effector, clearance-while IL6 directed the APR toward regeneration. Protein shedding on the cell surface was pronounced upon IL1b stimulation, and small molecule inhibition of ADAM and matrix metalloproteases identified induced as well as constitutive shedding events. Inhibition of ADAM proteases with TAPI-0 resulted in reduced shedding of the sorting receptor SORT1, and an attenuated cytokine response suggesting a direct link between cell surface shedding and cytokine secretion rates.


Subject(s)
Acute-Phase Reaction , Interleukin-6 , Acute-Phase Proteins , Cytokines , Hepatocytes/metabolism , Humans
9.
Nat Methods ; 17(5): 495-503, 2020 05.
Article in English | MEDLINE | ID: mdl-32284610

ABSTRACT

We have used a mass spectrometry-based proteomic approach to compile an atlas of the thermal stability of 48,000 proteins across 13 species ranging from archaea to humans and covering melting temperatures of 30-90 °C. Protein sequence, composition and size affect thermal stability in prokaryotes and eukaryotic proteins show a nonlinear relationship between the degree of disordered protein structure and thermal stability. The data indicate that evolutionary conservation of protein complexes is reflected by similar thermal stability of their proteins, and we show examples in which genomic alterations can affect thermal stability. Proteins of the respiratory chain were found to be very stable in many organisms, and human mitochondria showed close to normal respiration at 46 °C. We also noted cell-type-specific effects that can affect protein stability or the efficacy of drugs. This meltome atlas broadly defines the proteome amenable to thermal profiling in biology and drug discovery and can be explored online at http://meltomeatlas.proteomics.wzw.tum.de:5003/ and http://www.proteomicsdb.org.


Subject(s)
Gene Expression Regulation , Prokaryotic Cells/metabolism , Proteins/chemistry , Proteins/metabolism , Proteome/analysis , Transition Temperature , Animals , Electron Transport Chain Complex Proteins/metabolism , Humans , Mitochondria/metabolism , Protein Stability , Software , Species Specificity
10.
Nat Methods ; 16(11): 1087-1093, 2019 11.
Article in English | MEDLINE | ID: mdl-31659326

ABSTRACT

Gene knock outs (KOs) are efficiently engineered through CRISPR-Cas9-induced frameshift mutations. While the efficiency of DNA editing is readily verified by DNA sequencing, a systematic understanding of the efficiency of protein elimination has been lacking. Here we devised an experimental strategy combining RNA sequencing and triple-stage mass spectrometry to characterize 193 genetically verified deletions targeting 136 distinct genes generated by CRISPR-induced frameshifts in HAP1 cells. We observed residual protein expression for about one third of the quantified targets, at variable levels from low to original, and identified two causal mechanisms, translation reinitiation leading to N-terminally truncated target proteins or skipping of the edited exon leading to protein isoforms with internal sequence deletions. Detailed analysis of three truncated targets, BRD4, DNMT1 and NGLY1, revealed partial preservation of protein function. Our results imply that systematic characterization of residual protein expression or function in CRISPR-Cas9-generated KO lines is necessary for phenotype interpretation.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Knockout Techniques , Cell Cycle Proteins/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Exons , Humans , Mutation , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Transcription Factors/genetics
11.
J Proteome Res ; 20(3): 1792-1801, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33621079

ABSTRACT

Multiplexed quantitative proteomics enabled complex workflows to study the mechanisms by which small molecule drugs interact with the proteome such as thermal proteome profiling (TPP) or multiplexed proteome dynamics profiling (mPDP). TPP measures changes in protein thermal stability in response to drug treatment and thus informs on direct targets and downstream regulation events, while the mPDP approach enables the discovery of regulated protein synthesis and degradation events caused by small molecules and other perturbations. The isobaric mass tags available for multiplexed proteomics have thus far limited the efficiency and sensitivity by which such experiments could be performed. Here we evaluate a recent generation of 16-plex isobaric mass tags and demonstrate the sensitive and time efficient identification of Staurosporine targets in HepG2 cell extracts by recording full thermal denaturation/aggregation profiles of vehicle and compound treated samples in a single mass spectrometry experiment. In 2D-TPP experiments, isothermal titration over seven concentrations per temperature enabled comprehensive selectivity profiling of Staurosporine with EC50 values for kinase targets tightly matching to the kinobeads gold standard assay. Finally, we demonstrate time and condition-based multiplexing of dynamic SILAC labeling experiments to delineate proteome-wide effects of the molecular glue Indisulam on synthesis and degradation rates.


Subject(s)
Pharmaceutical Preparations , Proteomics , Mass Spectrometry , Protein Stability , Proteome
12.
Chemistry ; 27(71): 17880-17888, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34328642

ABSTRACT

We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.


Subject(s)
Proteomics
13.
Mol Cell Proteomics ; 18(12): 2506-2515, 2019 12.
Article in English | MEDLINE | ID: mdl-31582558

ABSTRACT

Detecting the targets of drugs and other molecules in intact cellular contexts is a major objective in drug discovery and in biology more broadly. Thermal proteome profiling (TPP) pursues this aim at proteome-wide scale by inferring target engagement from its effects on temperature-dependent protein denaturation. However, a key challenge of TPP is the statistical analysis of the measured melting curves with controlled false discovery rates at high proteome coverage and detection power. We present nonparametric analysis of response curves (NPARC), a statistical method for TPP based on functional data analysis and nonlinear regression. We evaluate NPARC on five independent TPP data sets and observe that it is able to detect subtle changes in any region of the melting curves, reliably detects the known targets, and outperforms a melting point-centric, single-parameter fitting approach in terms of specificity and sensitivity. NPARC can be combined with established analysis of variance (ANOVA) statistics and enables flexible, factorial experimental designs and replication levels. An open source software implementation of NPARC is provided.


Subject(s)
Pharmaceutical Preparations/metabolism , Proteome , Proteomics/methods , Antineoplastic Agents/metabolism , Cell Line , Dasatinib/metabolism , Datasets as Topic , Drug Stability , Enzyme Inhibitors/metabolism , Humans , K562 Cells , Panobinostat/metabolism , Protein Binding , Sensitivity and Specificity , Software , Statistics, Nonparametric , Staurosporine/metabolism , Temperature
14.
Angew Chem Int Ed Engl ; 60(43): 23327-23334, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34416073

ABSTRACT

Focal adhesion kinase (FAK) is a key mediator of tumour progression and metastasis. To date, clinical trials of FAK inhibitors have reported disappointing efficacy for oncology indications. We report the design and characterisation of GSK215, a potent, selective, FAK-degrading Proteolysis Targeting Chimera (PROTAC) based on a binder for the VHL E3 ligase and the known FAK inhibitor VS-4718. X-ray crystallography revealed the molecular basis of the highly cooperative FAK-GSK215-VHL ternary complex, and GSK215 showed differentiated in-vitro pharmacology compared to VS-4718. In mice, a single dose of GSK215 induced rapid and prolonged FAK degradation, giving a long-lasting effect on FAK levels (≈96 h) and a marked PK/PD disconnect. This tool PROTAC molecule is expected to be useful for the study of FAK-degradation biology in vivo, and our results indicate that FAK degradation may be a differentiated clinical strategy versus FAK inhibition for the treatment of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Focal Adhesion Kinase 1/antagonists & inhibitors , Proteolysis/drug effects , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Dipeptides/chemistry , Dipeptides/pharmacokinetics , Dipeptides/pharmacology , Focal Adhesion Kinase 1/metabolism , Humans , Mice , Molecular Structure , Ubiquitin-Protein Ligases/metabolism
15.
Nature ; 509(7502): 582-7, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24870543

ABSTRACT

Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns and post-translational modifications, all of which carry biological information that is not accessible by genomics or transcriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance, in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology.


Subject(s)
Databases, Protein , Mass Spectrometry , Proteome/analysis , Proteome/chemistry , Proteomics , Body Fluids/chemistry , Body Fluids/metabolism , Cell Line , Gene Expression Profiling , Genome, Human/genetics , Humans , Molecular Sequence Annotation , Organ Specificity , Proteome/genetics , Proteome/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics
16.
Drug Discov Today Technol ; 31: 99-108, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31200865

ABSTRACT

Quantitative proteomics methods are instrumental in measuring the interplay between protein synthesis and protein degradation in cells and tissues in different conditions and substantially contribute to the understanding of control mechanisms for protein homeostasis. Proteomics and chemoproteomics approaches enable the characterization of small molecule modifiers of protein degradation for therapeutic applications. Here, we review recent developments and applications of mass spectrometry-based (chemo-)proteomics methods for the study of cellular homeostasis.


Subject(s)
Proteins/metabolism , Proteomics/methods , Animals , Homeostasis , Humans
17.
Mol Cell Proteomics ; 16(5): 770-785, 2017 05.
Article in English | MEDLINE | ID: mdl-28336715

ABSTRACT

The plasma membrane proteome plays a crucial role in inter- and intracellular signaling, cell survival, and cell identity. As such, it is a prominent target for pharmacological intervention. The relatively low abundance of this subproteome in conjunction with challenging extractability and solubility still hampers its comprehensive analysis. Here, we combined a chemical glycoprotein-tagging strategy with mass spectrometry to enable comprehensive analysis of the cell-surface glycoproteome. To benchmark this workflow and to provide guidance for cell line selection for functional experiments, we generated an inventory of the N-linked cell-surface glycoproteomes of 15 standard laboratory human cell lines and three primary lymphocytic cell types. On average, about 900 plasma membrane and secreted proteins were identified per experiment, including more than 300 transporters and ion channels. Primary cells displayed distinct expression of surface markers and transporters underpinning the importance of carefully validating model cell lines selected for the study of cell surface-mediated processes. To monitor dynamic changes of the cell-surface proteome in a highly multiplexed experiment, we employed an isobaric mass tag-based chemical labeling strategy. This enabled the time-resolved analysis of plasma membrane protein presentation during differentiation of the monocytic suspension cell line THP-1 into macrophage-like adherent cells. Time-dependent changes observed in membrane protein presentation reflect functional remodeling during the phenotypic transition in three distinct phases: rapid surface presentation and secretion of proteins from intracellular pools concurrent with rapid internalization of no longer needed proteins and finally delayed presentation of newly synthesized macrophage markers. Perturbation of this process using marketed receptor tyrosine kinase inhibitors revealed dasatinib to severely compromise macrophage differentiation due to an off-target activity. This finding suggests that dynamic processes can be highly vulnerable to drug treatment and should be monitored more rigorously to identify adverse drug effects.


Subject(s)
Cell Differentiation , Cell Membrane/metabolism , Glycoproteins/metabolism , Macrophages/cytology , Macrophages/metabolism , Membrane Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Biotinylation , Cell Line , Dasatinib/pharmacology , Humans , Monocytes/cytology , Protein Kinase Inhibitors/pharmacology , Reproducibility of Results
18.
J Am Chem Soc ; 140(3): 932-939, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29232121

ABSTRACT

Selective covalent inhibition of kinases by targeting poorly conserved cysteines has proven highly fruitful to date in the development of chemical probes and approved drugs. However, this approach is limited to ∼200 kinases possessing such a cysteine near the ATP-binding pocket. Herein, we report a novel approach to achieve selective, irreversible kinase inhibition, by targeting the conserved catalytic lysine residue. We have illustrated our approach by developing selective, covalent PI3Kδ inhibitors that exhibit nanomolar potency in cellular assays, and a duration of action >48 h in CD4+ T cells. Despite conservation of the lysine residue throughout the kinome, the lead compound shows high levels of selectivity over a selection of lipid and protein kinases in biochemical assays, as well as covalent binding to very few off-target proteins in live-cell proteomic studies. We anticipate this approach could offer a general strategy, as an alternative to targeting non-conserved cysteines, for the development of selective covalent kinase inhibitors.


Subject(s)
Lysine/chemistry , Phosphatidylinositol 3-Kinases/chemistry , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Catalytic Domain/drug effects , Cell Line , Class I Phosphatidylinositol 3-Kinases , Drug Discovery , Humans , Lysine/metabolism , Mice , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Proteomics
19.
Nat Methods ; 12(12): 1129-31, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26524241

ABSTRACT

We extended thermal proteome profiling to detect transmembrane protein-small molecule interactions in cultured human cells. When we assessed the effects of detergents on ATP-binding profiles, we observed shifts in denaturation temperature for ATP-binding transmembrane proteins. We also observed cellular thermal shifts in pervanadate-induced T cell-receptor signaling, delineating the membrane target CD45 and components of the downstream pathway, and with drugs affecting the transmembrane transporters ATP1A1 and MDR1.


Subject(s)
Membrane Proteins/metabolism , Proteome/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , ATP Binding Cassette Transporter, Subfamily B/metabolism , Caco-2 Cells , Hot Temperature , Humans , Jurkat Cells , K562 Cells , Ligands , Protein Binding , Protein Stability , Proteome/metabolism , Receptors, Antigen, T-Cell/metabolism , Small Molecule Libraries/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Vanadates/pharmacology
20.
Nat Chem Biol ; 12(11): 908-910, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27669419

ABSTRACT

We describe a two-dimensional thermal proteome profiling strategy that can be combined with an orthogonal chemoproteomics approach to enable comprehensive target profiling of the marketed histone deacetylase inhibitor panobinostat. The N-hydroxycinnamide moiety is identified as critical for potent and tetrahydrobiopterin-competitive inhibition of phenylalanine hydroxylase leading to increases in phenylalanine and decreases in tyrosine levels. These findings provide a rationale for adverse clinical observations and suggest repurposing of the drug for treatment of tyrosinemia.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Phenylalanine Hydroxylase/antagonists & inhibitors , Temperature , Dose-Response Relationship, Drug , Hep G2 Cells , Histone Deacetylase Inhibitors/chemistry , Humans , Hydroxamic Acids/chemistry , Indoles/chemistry , Molecular Structure , Panobinostat , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL