Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Molecules ; 28(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764246

ABSTRACT

The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.


Subject(s)
Lignin , Nanostructures , Agriculture , Anti-Bacterial Agents/pharmacology , Polymers
2.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35163199

ABSTRACT

In the present study, thirty two lactic acid bacteria (LAB) were isolated from fermented Indian herbal medicine. In comparison to other strains, MNL5 had stronger bile salt hydrolase (BSH) and cholesterol-lowering properties. Furthermore, it can withstand the extreme conditions found in the GI tract, due to, e.g., pepsin, bile salts, pancreatin, and acids. Pediococcus acidilactici MNL5 was identified as a probiotic candidate after sequencing the 16S rRNA gene. The antibacterial activity of P. acidilactici MNL5 cell-free supernatants (CFS) against Escherichia coli, Staphylococcus aureus, Helicobacter pylori, Bacillus cereus, and Candida albicans was moderate. A Caenorhabditis elegans experiment was also performed to assess the effectiveness of P. acidilactici MNL5 supplementation to increase life span compared to E. coli supplementation (DAF-2 and LIU1 models) (p < 0.05). An immense reduction of the lipid droplets of C. elegans was identified through a fluorescent microscope. The drastic alteration of the expression of fat genes is related to obesity phenotypes. Hence, several paths are evolutionary for C. elegans; the results of our work highlight the nematode as an important model for obesity.


Subject(s)
Anti-Obesity Agents/pharmacology , Pediococcus acidilactici/metabolism , Probiotics/pharmacology , Animals , Anti-Bacterial Agents/metabolism , Bile Acids and Salts/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Fermentation , Herbal Medicine/methods , Lactobacillales/genetics , Lactobacillales/metabolism , Obesity/microbiology , Pediococcus acidilactici/physiology , RNA, Ribosomal, 16S/genetics
3.
Microb Pathog ; 129: 284-297, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30753888

ABSTRACT

BACKGROUND: Among the Bacillus cereus group, B. thuringiensis, is one of the most extensively used biological control agent. The present study reports the complete genome and four novel plasmid analysis of the type strain B. thuringiensis ATCC 10792. METHODS: Complete genome sequencing of Bacillus thuringiensis ATCC 10792, assembled using de-novo (v.3.2.0, assembly name MIRA3), Pac-Bio sequencers and Hierarchical Genome Assembly Process software (version 4.1) and real-time polymerase chain reaction (qPCR) is a consistent technique for quantifying gene expression based on specific biomarkers, in addition the efficiency of the primers were analysed based on artificially spiked food samples on lettuce, kimbab and spinach with B. thuringiensis ATCC 10792. RESULTS: Complete genome annotation was performed, and a total of 6269 proteins with 5427594 bps were identified and four novel plasmid (poh2, poh3, poh4, poh5) a total of 134, 131, 96, 21 proteins with 113294; 92,949; 86488; 11332 bps were identified. Six selective genes (lipoprotein-lipo, methyltransferase-MT, S-layer homology domain protein-BC, flagellar motor protein-motB, transcriptional regulator-XRE, crystal protein-cry2) and associated four novel plasmids were investigated along with the characteristics and expression profiles of two housekeeping genes (chaperonin protein-GroEL and topoisomerase enzyme-gyrB). Although from the assessment of 120 strains, both GroEL and gyrB showed 100% specificity towards detection of both B. thuringiensis in artificially spiked vegetable samples. All the eight genes revealed no specificity towards any of the 9 non- Bacillus strains. CONCLUSION: In our study based on the complete genome and plasmid sequence of B. thuringiensis ATCC 10792, among the six discriminating genes, specifically GroEL, gyrB and XRE showed promising results in identifying B. thuringiensis ATCC 10792, and there detection limit was 3.0-9.6 log CFU/g in the food samples respectfully. The key role in control of the predatory biological agent.


Subject(s)
Bacillus cereus/genetics , Bacillus thuringiensis/classification , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Genetic Markers , Genome, Bacterial , Whole Genome Sequencing , Bacillus cereus/classification , Bacillus thuringiensis/isolation & purification , Gene Expression Profiling , Molecular Sequence Annotation , Plasmids/analysis , Sequence Analysis, DNA , Vegetables/microbiology
4.
BMC Complement Altern Med ; 16: 264, 2016 Jul 30.
Article in English | MEDLINE | ID: mdl-27476116

ABSTRACT

BACKGROUND: The medical application of pomegranate fruits and its peel is attracted human beings. The aim of the present study was to evaluate the in vitro α-Glucosidase inhibition, antimicrobial, antioxidant property and in vivo anti-hyperglycemic activity of Punica granatum (pomegranate) fruit peel extract using Caenorhabditis elegans. METHODS: Various invitro antioxidant activity of fruit peel extracts was determined by standard protocol. Antibacterial and antifungal activities were determined using disc diffusion and microdilution method respectively. Anti-hyperglycemic activity of fruit peel was observed using fluorescence microscope for in vivo study. RESULTS: The ethyl acetate extract of P. granatum fruit peel (PGPEa) showed α-Glucosidase inhibition upto 50 % at the concentration of IC50 285.21 ± 1.9 µg/ml compared to hexane and methanol extracts. The total phenolic content was highest (218.152 ± 1.73 mg of catechol equivalents/g) in ethyl acetate extract. PGPEa showed more scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) with IC50 value 302.43 ± 1.9 µg/ml and total antioxidant activity with IC50 294.35 ± 1.68 µg/ml. PGPEa also showed a significant effecton lipid peroxidation IC50 208.62 ± 1.68 µg/ml, as well as high reducing power. Among the solvents extracts tested, ethyl acetate extract of fruit peel showed broad spectrum of antimicrobial activity. Ethyl acetate extract supplemented C.elegans worms showed inhibition of lipid accumulation similar to acarbose indicating good hypoglycemic activity. The normal worms compared to test (ethyl acetate extract supplemented) showed the highest hypoglycaemic activity by increasing the lifespan of the worms. GC-MS analysis of PGPEa showed maximum amount of 5-hydroxymethylfurfural and 4-fluorobenzyl alcohol (48.59 %). CONCLUSION: In the present investigation we observed various biological properties of pomegranate fruit peel. The results clearly indicated that pomegranate peel extract could be used in preventing the incidence of long term complication of diabetics.


Subject(s)
Anti-Infective Agents , Antioxidants , Fruit/chemistry , Lythraceae/chemistry , Plant Extracts , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Bacteria/drug effects , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Fungi/drug effects , Lipid Metabolism/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology
5.
Food Chem X ; 21: 101233, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38426074

ABSTRACT

Whole hempseed (WHS), fermented whole hempseed (FWHS), dehulled hempseed (DHS), and fermented dehulled hempseed (FDHS) ethanol extracts were tested for their toxicity and physiological benefits in relation to their phenolic profiles. The safety of all samples was confirmed by the absence of toxic effects on HepG2 cells. FWHS exhibited the highest capacity to inhibit lipase activity (70.80%) and acetylcholinesterase (AChE) (78.94%) in vitro. Similarly, in HepG2 cells, FWHS revealed the greatest ability to reduce the accumulation of reactive oxygen species (ROS). Fermented hempseed demonstrated superior antioxidant, neuroprotective and anti-fat potential, counteracting ageing in high glucose diet-induced C. elegans than unfermented. HPLC and UHPLC-Q-TOF-MS/MS2 phenolic identification revealed the presence of diverse flavonoids, phenolic acids, lignanamides, and phenylamides in hempseed extracts. Among these polyphenols, quercetin, gallic acid, and kaempferol exhibited excellent antioxidant potential, whereas N-trans-feruloyl tyramine displayed the highest anti-lipase potential. This study suggests that polyphenol-rich hempseed exhibits potent antioxidant, and anti-obesity effects, and could improve neural health.

6.
NPJ Sci Food ; 8(1): 20, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555366

ABSTRACT

There is a substantial rise in the global incidence of obesity. Brown rice contains metabolic substances that can help minimize the prevalence of obesity. This study evaluated nine brown rice varieties using probiotic fermentation using Pediococcus acidilacti MNL5 to enhance bioactive metabolites and their efficacy. Among the nine varieties, FBR-1741 had the highest pancreatic lipase inhibitory efficacy (87.6 ± 1.51%), DPPH assay (358.5 ± 2.80 mg Trolox equiv./100 g, DW), and ABTS assay (362.5 ± 2.32 mg Trolox equiv./100 g, DW). Compared to other fermented brown rice and FBR-1741 varieties, UHPLC-Q-TOF-MS/MS demonstrated significant untargeted metabolite alterations. The 17 most abundant polyphenolic metabolites in the FBR-1741 variety and 132 putative targets were assessed for obesity-related target proteins, and protein interaction networks were constructed using the Cystoscope software. Network pharmacology analysis validated FBR-1741 with active metabolites in the C. elegans obesity-induced model. Administration of FBR-1741 with ferulic acid improved lifespan decreased triglycerides, and suppressed the expression of fat-related genes. The enhanced anti-obesity properties of FBR-1741 suggest its implementation in obesity-functional food.

7.
Life (Basel) ; 13(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36836733

ABSTRACT

Naturally occurring phytochemicals from plants or grains are crucial in reducing various metabolic disorders. Bioactive phytonutrients are abundant in the Asian dietary staple, brown rice. This research evaluated the impact of lactic acid bacteria (LABs) bioconversion and fermentation on antioxidant and antiobesity activities and ferulic acid content in brown rice. The combination of bioconversion with Pediococcus acidilactici MNL5 among all LABs used showed a synergistic impact with 24 h of solid-state brown rice fermentation. The 24-h MNL5 fermented brown rice (FBR) demonstrated the most potent pancreatic lipase inhibitory activity (85.5 ± 1.25%) compared to raw brown rice (RBR) (54.4 ± 0.86%). The antioxidant potential of MNL5-FBR was also found to be highest in the DPPH assay (124.40 ± 2.40 mg Trolox Equiv./100 g, DW), ABTS assay (130.52 ± 2.32 mg Trolox Equiv./100 g, DW), and FRAP assay (116.16 ± 2.42 mg Trolox Equiv./100 g, DW). Based on higher antioxidant and antiobesity activities, samples were quantified for ferulic acid content using the HPLC-MS/MS approach. Furthermore, C. elegans supplementation with FBR showed enhanced life span and lipid reduction in fluorescence microscope analysis compared to the control. Our results indicate that the expression study using the C. elegans model (N2 and Daf-2 models) fat gene was conducted, showing a lowering of obesity ability in FBR-fed worms. Our study indicates that FBR has improved antioxidant and antiobesity actions, especially in MNL5-FBR, and can be employed to develop functional foods that combat obesity.

8.
Food Chem ; 404(Pt B): 134710, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36323042

ABSTRACT

The bioconversion of onion extracts with P. acidilactici MNL5 enhances the metabolites and has a synergistic lipid-reduction impact that is beneficial for anti-obesity studies. The 48 h fermented onion extracts (FOE) demonstrated an enhanced inhibitory activity against pancreatic lipase (89.5 ± 1.25 %) as compared to the raw onion extract (ROE) (33.4 ± 0.86 %). The antioxidant properties of FOE significantly increased compared to the ROE inhibitory effect on DPPH (99.5 ± 2.40 mg vitamin C equiv./mg, DW FOE), and ABTS (104.5 ± 2.32 mg vitamin C equiv./mg, DW FOE). Based on FOE's higher antioxidant activity, UHPLC-Q-TOF-MS/MS demonstrated dramatic changes in the untargeted metabolite profile as compared to ROE. Moreover, C. elegans supplemented with FOE and quercetin exhibited an enhanced lifespan activity, lipid reduction, and decreased triglycerides. FOE can lower cholesterol and enhance quercetin to promote pancreatic lipase activity for synergistic anti-obesity effects.


Subject(s)
Onions , Quercetin , Animals , Onions/metabolism , Caenorhabditis elegans , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Lipase/metabolism , Ascorbic Acid/metabolism , Lipids
9.
Int J Biol Macromol ; 253(Pt 8): 127330, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37832623

ABSTRACT

Exopolysaccharides (EPS) are natural, nontoxic, biocompatible and biodegradable macromolecules produced by microorganisms, including the Lactic acid bacteria, to enhance protection against environmental stress conditions. The current study focused on the encapsulation and functional efficiency of EPS produced by probiotic strains isolated from human milk. Among 27 isolates, the potential high EPS-producing strain Limosilactobacillus reuteri KCTC 14626BP was selected based on biofilm production. The structural Characterization of EPS was performed based on FTIR, NMR and functional properties were determined; further, the encapsulation efficiency of EPS was determined with caffeic acid. The results indicate that L. reuteri produced EPS major component consisting of glucose, galactose and arabinose with the ratio of (0.78:0.16: 0.05). The antioxidant efficiency of EPS-LR was determined on DPPH (60.3 %) and ABTS (48.9 %); EPS showed enhanced functional activities. The absence of toxicity was confirmed based on Caenorhabditis elegans. The EPS-loaded Caffeic acid (CA) EPS-LR indicated spherical capsules with rough surfaces, with sizes ranging from 1.39 to 6.75 µm. These findings indicate that EPS-LR can be applied as a bioactive compound and encapsulating material in food, cosmetics, and pharmaceutical industries.


Subject(s)
Limosilactobacillus reuteri , Polysaccharides, Bacterial , Female , Humans , Polysaccharides, Bacterial/chemistry , Milk, Human , Caffeic Acids
10.
Antioxidants (Basel) ; 11(5)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35624702

ABSTRACT

In recent years, the health benefits of the pigmented rice varieties have been reported due to the richness of their bioactive compounds. Therefore, this study evaluated the antioxidant, total flavonoid, total phenolic, anthocyanin content, amino acid and individual phenolic compound quantification of nine Korean-grown rice varieties using spectrophotometric, HPLC-FLD-MS/MS and UHPLC Q-TOF-MS/MS methods. Our research found that the free fractions of DM29 (red rice) had the highest free radical scavenging ability of ABTS and DPPH. In contrast, the highest ferric reducing antioxidant power was observed in the 01708 brown rice variety. The majority of phenolic compounds such as quercetin, ferulic acid, p-coumaric acid, ascorbic acid, caffeic acid and genistein were found in the DM29 sample. The phenolic content of rice varies depending on its color, with DM29 red rice having the highest TPC, TFC and TAC levels. At the same time, the presence of the majority of amino acids was quantified in the 01708 and GR (Gangwon) brown rice varieties. According to this study, colored rice varieties are high in amino acids, phenolic compounds and antioxidants. This research would be beneficial in furthering our understanding of the nutritional value of different colors of rice and their high potential as a natural antioxidant.

11.
Foods ; 9(5)2020 May 04.
Article in English | MEDLINE | ID: mdl-32375308

ABSTRACT

In the future, plant based phytochemicals will be considered as efficient replacement sources of chemical preservatives, to act as potential bio-preservatives. We investigated the antibacterial and antioxidant activity of red cabbage (RC) extracts using different solvents. Among all extracts, chloroform extract exhibited strong antimicrobial and antioxidant activities. Hence, the phytochemical constitutions of the RC chloroform extract was examined by GC-MS analysis, and further, based on molecular docking analysis, revealed 2-Methoxy-4-vinylphenol and benzofuran as two major compounds found to be possessing higher degrees of interaction with DNA gyrase (4PLB; -8.63 Kcal.mol-1) and lipoprotein (LpxC-8.229 Kcal.mol-1), respectively, of the bacterial cell wall, which leads to higher antimicrobial efficacy. Further, it was confirmed with that the in vivo Caenorhabditis elegans model (but no cytotoxic effect) was exhibited in the MCF-7 cell line. Thus, we investigated the influence of this extract on the shelf life of meat under refrigeration storage. The physicochemical properties were observed periodically, and microbial analysis was conducted. The shelf life of the beef was enhanced (up to eight days) in terms of microbial and physiochemical properties, at 4 ± 2 °C when compared to control. We concluded that chloroform extract of RC has potential as a natural preservative in the meat processing industry.

12.
Int J Biol Macromol ; 163: 36-43, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32585274

ABSTRACT

Trigonelline-loaded water-soluble chitosan nanoparticles (Trigo-WSCS NPs) were prepared for the treatment of glioblastoma (targeting C6 glioma cells) and also evaluated its biocompatibility with rat adrenal pheochromocytoma cells (PC12 cells). WSCS-Trigo NPs characteristics were determined using UV-Visible spectrophotometer, FTIR, XRD, TEM, DLS, and Zeta potential. Trigo-WSCS NPs were noted to have a spherical shape, with an average size of 356 nm. Trigo-WSCS NPs zeta potential was 30.9 mv, which expresses its good stability. The WSCS-Trigo NPs considerably inhibited the growth of rat C6 glioma cells and exhibited an IC50 concentration of 34 µg/mL. Further, Trigo-WSCS NPs were biocompatible with PC12 cells in terms of enhancing neurite growth and differentiation. In conclusion, Trigo-WSCS NPs could act as an antitumor drug for the treatment of glioblastoma as suggested by the in vitro studies.


Subject(s)
Alkaloids/chemistry , Alkaloids/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chitosan/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Adrenal Gland Neoplasms/metabolism , Alkaloids/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chitosan/administration & dosage , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Drug Liberation , Flow Cytometry , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Materials Testing , Microscopy, Fluorescence , Nanoparticles/administration & dosage , Nanoparticles/analysis , Particle Size , Pheochromocytoma/metabolism , Rats
13.
Biosci Microbiota Food Health ; 39(4): 199-208, 2020.
Article in English | MEDLINE | ID: mdl-33117618

ABSTRACT

Plant proteins are known to possess important bioactive peptides and have a positive impact on gut microbial modulation. In this study, we studied the ability of a single dose of a fermented soy protein product (P-SPI) to reduce high blood pressure in spontaneous hypertensive rats (SHR) and how it modulates the gut microbiota after six weeks of feeding. SHRs were fed with P-SPI, Captopril or distilled water once, and their blood pressures were monitored from the first to twelfth-hour post-administration. Consumption of P-SPI significantly reduced systolic and diastolic blood pressures up to the sixth hour by 25 ± 4 mmHg and 40 ± 5 mmHg respectively. P-SPI consumption inhibited serum ACE activity, increased superoxide dismutase activity and nitric oxide levels and reduced malondialdehyde levels in serum. Analysis of fecal microbial 16S rRNA of hypertensive rats revealed a significant reduction in microbial richness and diversity in the gut, while P-SPI consumption improved microbial richness and increased diversity. Also, P-SPI feeding significantly reduced the Firmicutes/Bacteroidetes ratio, increased propionate- and H2S-producing bacteria and reduced Streptococcaceae and Erysipelotrichales levels. Our results show that P-SPI is a potential antihypertensive functional food which could remodel the altered gut microbiota of hypertensive patients.

14.
Front Cell Infect Microbiol ; 10: 596570, 2020.
Article in English | MEDLINE | ID: mdl-33614524

ABSTRACT

Campylobacter spp. are the leading global cause of bacterial colon infections in humans. Enteropathogens are subjected to several stress conditions in the host colon, food complexes, and the environment. Species of the genus Campylobacter, in collective interactions with certain enteropathogens, can manage and survive such stress conditions. The stress-adaptation mechanisms of Campylobacter spp. diverge from other enteropathogenic bacteria, such as Escherichia coli, Salmonella enterica serovar Typhi, S. enterica ser. Paratyphi, S. enterica ser. Typhimurium, and species of the genera Klebsiella and Shigella. This review summarizes the different mechanisms of various stress-adaptive factors on the basis of species diversity in Campylobacter, including their response to various stress conditions that enhance their ability to survive on different types of food and in adverse environmental conditions. Understanding how these stress adaptation mechanisms in Campylobacter, and other enteric bacteria, are used to overcome various challenging environments facilitates the fight against resistance mechanisms in Campylobacter spp., and aids the development of novel therapeutics to control Campylobacter in both veterinary and human populations.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Shigella , Campylobacter Infections/veterinary , Enterobacteriaceae , Humans
15.
Data Brief ; 31: 105745, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32551342

ABSTRACT

Most of the probiotics Bacterial cells, express native antibacterial genes, resulting in the production of, antimicrobial peptides, which have various applications in biotechnology and drug development. But the identification of antibacterial peptide, structural characterization of antimicrobial peptide and prediction on mode of action. Regardless of the significance of protein manufacturing, three individual factors are required for the production method: gene expression, stabilization and specific peptide purification. Our protocol describes a straightforward technique of detecting and characterizing particular extracellular peptides and enhancing the antimicrobial peptide expression we optimized using low molecular weight peptides. This protocol can be used to improve peptide detection and expression. The following are the benefits of this method, (DOI - https://doi.org/10.1016/j.ijbiomac.2019.10.196 [1]). The data briefly describe a simple method in detection identification, characterization of antimicrobial extracellular peptide, predicating the mode of action of peptide in targeting pathogens (In-silico method), brief method on profiling of antimicrobial peptide and its mode of action [1]. Further the protocol can be used to enhance the specific peptide expressions, detection of peptides. The advantages of this technique are presented below:•Characterization protocol of specific antimicrobial peptide•The folded antimicrobial peptide expression were less expressed or non-expressed peptides.•Besides being low cost, less time-consuming, easy to handle, universal and fast to execute, the suggested technique can be used for multiple proteins expressed in probiotics (Lactobacillus species) expression system.

16.
Int J Biol Macromol ; 143: 555-572, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31785295

ABSTRACT

Human-milk-based probiotics play a major role in the early colonization and protection of infants against gastrointestinal infection. We investigated potential probiotics in human milk. Among 41 Lactic acid bacteria (LAB) strains, four strains showed high antimicrobial activity against Escherichia coli 0157:H7, Listeria monocytogenes ATCC 15313, Bacillus cereus ATCC 14576, Staphylococcus aureus ATCC 19095, and Helicobacter pylori. The selected LAB strains were tested in simulated gastrointestinal conditions for their survival. Four LAB strains showed high resistance to pepsin (82%-99%), bile with pancreatine stability (96%-100%), and low pH (80%-94%). They showed moderate cell surface hydrophobicity (22%-46%), auto-aggregation abilities (12%-34%), and 70%-80% co-aggregation abilities against L. monocytogenes ATCC 15313, S. aureus ATCC 19095, B. cereus ATCC 14576, and E. coli 0157:H7. All four selected isolates were resistant to gentamicin, imipenem, novobiocin, tetracycline, clindamycin, meropenem, ampicillin, and penicillin. The results show that Pediococcus acidilatici is likely an efficient probiotic strain to produce < 3 Kda pediocin-based antimicrobial peptides, confirmed by applying amino acid sequences), using liquid chromatography mass spectrometry and HPLC with the corresponding sequences from class 2 bacteriocin, and based on the molecular docking, the mode of action of pediocin was determined on LipoX complex, further the 13C nuclear magnetic resonance structural analysis, which confirmed the antimicrobial peptide as pediocin.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Caenorhabditis elegans/microbiology , Pediocins , Pediococcus acidilactici/chemistry , Probiotics , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Pediocins/chemistry , Pediocins/pharmacology , Probiotics/chemistry , Probiotics/pharmacology
17.
Microorganisms ; 7(10)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623075

ABSTRACT

The growing prevalence of obesity has become an important problem worldwide as obesity has several health risks. Notably, factors such as excessive food consumption, a sedentary way of life, high sugar consumption, a fat-rich diet, and a certain genetic profile may lead to obesity. The present review brings together recent advances regarding the significance of interventions involving intestinal gut bacteria and host metabolic phenotypes. We assess important biological molecular mechanisms underlying the impact of gut microbiota on hosts including bile salt metabolism, short-chain fatty acids, and metabolic endotoxemia. Some previous studies have shown a link between microbiota and obesity, and associated disease reports have been documented. Thus, this review focuses on obesity and gut microbiota interactions and further develops the mechanism of the gut microbiome approach related to human obesity. Specifically, we highlight several alternative diet treatments including dietary changes and supplementation with probiotics. The future direction or comparative significance of fecal transplantation, synbiotics, and metabolomics as an approach to the modulation of intestinal microbes is also discussed.

18.
Nutrients ; 11(7)2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31262013

ABSTRACT

The Asian food pattern primarily embraces rice and rice-based products, which mainly comprise 90% starch. Among these various food products, Idli is mostly prepared through fermentation. It has high palatability, and the rapid and highly digestible nature of the food product results in a higher post-glucose level in diabetic patients. A heat-treated Idli rice sample was prepared by roasting parboiled rice at the temperature range of 155 to 165 °C for 65 to 75 s. Idli/rice-based Dokala made from heat-treated rice is better when compared to untreated rice in terms of its microbiological profile and physiochemical properties. The proximate composition of heat-treated parboiled rice Idli/Rice Dokala showed slightly higher values than the untreated parboiled rice Idli/Rice Dokala, which reveals that it has marginally higher nutritive value. Determination of the Rapidly Available Glucose (RAG) and Slowly Available Glucose (SAG) values, SEM analysis, resistant starch analysis, microbial assay, and in vivo studies were performed to determine the glycemic index (GI) and glycemic load in normal and diabetic persons. Sensory analysis also proved that heat-treated Idli/Rice Dokala is superior to untreated based on the color, flavor, appearance, taste, and texture.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus/diet therapy , Diet, Diabetic , Fermented Foods , Food Handling , Food Microbiology , Glycemic Index , Oryza/microbiology , Biomarkers/blood , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Fermentation , Glycemic Load , Humans , Oryza/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL