Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nature ; 587(7835): 605-609, 2020 11.
Article in English | MEDLINE | ID: mdl-33177710

ABSTRACT

Expansion of anthropogenic noise and night lighting across our planet1,2 is of increasing conservation concern3-6. Despite growing knowledge of physiological and behavioural responses to these stimuli from single-species and local-scale studies, whether these pollutants affect fitness is less clear, as is how and why species vary in their sensitivity to these anthropic stressors. Here we leverage a large citizen science dataset paired with high-resolution noise and light data from across the contiguous United States to assess how these stimuli affect reproductive success in 142 bird species. We find responses to both sensory pollutants linked to the functional traits and habitat affiliations of species. For example, overall nest success was negatively correlated with noise among birds in closed environments. Species-specific changes in reproductive timing and hatching success in response to noise exposure were explained by vocalization frequency, nesting location and diet. Additionally, increased light-gathering ability of species' eyes was associated with stronger advancements in reproductive timing in response to light exposure, potentially creating phenological mismatches7. Unexpectedly, better light-gathering ability was linked to reduced clutch failure and increased overall nest success in response to light exposure, raising important questions about how responses to sensory pollutants counteract or exacerbate responses to other aspects of global change, such as climate warming. These findings demonstrate that anthropogenic noise and light can substantially affect breeding bird phenology and fitness, and underscore the need to consider sensory pollutants alongside traditional dimensions of the environment that typically inform biodiversity conservation.


Subject(s)
Birds/physiology , Lighting/adverse effects , Noise/adverse effects , Reproduction/radiation effects , Animals , Birds/classification , Citizen Science , Clutch Size/radiation effects , Confined Spaces , Datasets as Topic , Diet/veterinary , Ecosystem , Female , Geographic Mapping , Male , Nesting Behavior/physiology , Nesting Behavior/radiation effects , Ocular Physiological Phenomena/radiation effects , Reproduction/physiology , Species Specificity , United States , Vocalization, Animal/radiation effects
2.
Proc Natl Acad Sci U S A ; 119(25): e2117485119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35704762

ABSTRACT

Warning signals are well known in the visual system, but rare in other modalities. Some moths produce ultrasonic sounds to warn bats of noxious taste or to mimic unpalatable models. Here, we report results from a long-term study across the globe, assaying moth response to playback of bat echolocation. We tested 252 genera, spanning most families of large-bodied moths, and document anti-bat ultrasound production in 52 genera, with eight subfamily origins described. Based on acoustic analysis of ultrasonic emissions and palatability experiments with bats, it seems that acoustic warning and mimicry are the raison d'être for sound production in most moths. However, some moths use high-duty-cycle ultrasound capable of jamming bat sonar. In fact, we find preliminary evidence of independent origins of sonar jamming in at least six subfamilies. Palatability data indicate that jamming and warning are not mutually exclusive strategies. To explore the possible organization of anti-bat warning sounds into acoustic mimicry rings, we intensively studied a community of moths in Ecuador and, using machine-learning approaches, found five distinct acoustic clusters. While these data represent an early understanding of acoustic aposematism and mimicry across this megadiverse insect order, it is likely that ultrasonically signaling moths comprise one of the largest mimicry complexes on earth.


Subject(s)
Biological Mimicry , Echolocation , Escape Reaction , Moths , Acoustics , Animals , Biological Mimicry/physiology , Chiroptera/physiology , Echolocation/physiology , Escape Reaction/physiology , Moths/classification , Moths/physiology , Phylogeny , Predatory Behavior/physiology , Pyridines , Ultrasonics
3.
Biol Lett ; 20(5): 20230610, 2024 May.
Article in English | MEDLINE | ID: mdl-38747686

ABSTRACT

Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.


Subject(s)
Chiroptera , Coleoptera , Echolocation , Moths , Animals , Moths/physiology , Chiroptera/physiology , Coleoptera/physiology , Predatory Behavior , Biological Mimicry
4.
Conserv Biol ; 38(2): e14188, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37768199

ABSTRACT

Anthropogenic noise is one of the fastest growing, globally widespread pollutants, affecting countless species worldwide. Despite accumulating evidence of the negative impacts of wind turbines on wildlife, little is known about how the noise they generate affects ecological systems. Songbirds may be susceptible to noise pollution due to their reliance on vocal communication and thus, in this field study, we examined how songbirds are affected by wind turbine noise. We broadcasted noise produced by one wind turbine in a migratory stopover site during the nonbreeding season. Throughout the study, we repeatedly monitored the acoustic environment and songbird community before, during, and after the noise treatments with passive acoustic monitoring and mist netting. We employed generalized linear mixed effects models to assess the impact of experimental noise treatment on birds behavior and likelihood ratio tests to compare models with variables of interest with null models. The daily number of birds in the presence of wind turbine noise decreased by approximately 30% compared with the before and after phases. This reduction had a significant spatial pattern; the largest decrease was closer to the speaker and on its downwind side, fitting measured sound propagation. Although we found no impact on species diversity, two out of three most common species showed clear avoidance behavior: 45% and 36% decrease in abundance for the lesser whitethroat (Sylvia curruca) and Sardinian warbler (Sylvia melanocephala momus), respectively. In the after phase, there were lingering effects on the lesser whitethroat. The age structure of the lesser whitethroat population was affected because only juvenile birds showed avoidance behavior. No difference in avoidance extent was found between migratory and nonmigratory species, but the impacts of displacement on migrants during stopover are especially troubling from a conservation perspective. Our results stress the need to address the impacts of noise pollution on wildlife when planning noise-generating infrastructures, such as wind turbines, to allow for sustainable development without threatening already declining songbird populations.


El ruido antropogénico es uno de los contaminantes con mayor crecimiento y distribución a nivel mundial, por lo que afecta a incontables especies en todo el mundo. A pesar de acumular evidencia sobre el impacto negativo que tienen las turbinas eólicas sobre la fauna, se sabe muy poco sobre cómo el ruido que generan afecta a los sistemas ecológicos. Las aves canoras pueden ser susceptibles a la contaminación sonora ya que dependen de la comunicación vocal y, por lo tanto, en este estudio de campo, analizamos cómo les afecta el sonido producido por las turbinas eólicas. Transmitimos ruido producido por una turbina en un punto de parada migratorio durante la temporada no reproductiva. Durante el estudio, monitoreamos repetidas veces el entorno acústico y la comunidad de aves canoras antes, durante y después de los tratamientos de ruido con monitoreo acústico pasivo y redes de niebla. Empleamos modelos de efectos lineales mixtos generalizados para evaluar el impacto del ruido experimental sobre el comportamiento de las aves y pruebas de probabilidad de proporción para comparar los modelos con variables de interés con los modelos nulos. El número diario de aves en la presencia del ruido de turbinas eólicas disminuyó aproximadamente un 30% en comparación con las fases de antes y después. Esta reducción tuvo un patrón espacial significativo: la mayor disminución ocurrió más cerca a la bocina y en el lado de sotavento, lo que se ajusta a la medida de la propagación del sonido. Aunque no encontramos impacto alguno sobre la diversidad de especies, dos de tres de las especies más comunes mostraron un comportamiento de evasión evidente: 45% y 36% de disminución en la abundancia de Sylvia curruca y Sylvia melanocephala momus, respectivamente. Durante la fase posterior al ruido, observamos efectos prolongados en S. curruca. La composición de edades de la población de S. curruca se vio afectada porque sólo los individuos juveniles mostraron un comportamiento de evasión. No encontramos una diferencia en el grado de evasión entre las especies migratorias y no migratorias, pero el impacto del traslado sobre las migrantes durante el punto de parada es de preocupación especial desde una perspectiva de conservación. Nuestros resultados acentúan la necesidad de abordar el impacto de la contaminación sonora sobre la fauna cuando se planean estructuras que producen ruido, como las turbinas eólicas, para permitir el desarrollo sustentable sin amenazar a las poblaciones de aves canoras que ya están en declive. Efectos del ruido de turbinas eólicas sobre el comportamiento de las aves canoras durante la temporada no reproductiva.


Subject(s)
Songbirds , Animals , Noise/adverse effects , Conservation of Natural Resources , Seasons , Ecosystem , Animals, Wild
5.
Syst Biol ; 71(4): 859-874, 2022 06 16.
Article in English | MEDLINE | ID: mdl-34791485

ABSTRACT

One of the key objectives in biological research is understanding how evolutionary processes have produced Earth's diversity. A critical step toward revealing these processes is an investigation of evolutionary tradeoffs-that is, the opposing pressures of multiple selective forces. For millennia, nocturnal moths have had to balance successful flight, as they search for mates or host plants, with evading bat predators. However, the potential for evolutionary trade-offs between wing shape and body size are poorly understood. In this study, we used phylogenomics and geometric morphometrics to examine the evolution of wing shape in the wild silkmoth subfamily Arsenurinae (Saturniidae) and evaluate potential evolutionary relationships between body size and wing shape. The phylogeny was inferred based on 782 loci from target capture data of 42 arsenurine species representing all 10 recognized genera. After detecting in our data one of the most vexing problems in phylogenetic inference-a region of a tree that possesses short branches and no "support" for relationships (i.e., a polytomy), we looked for hidden phylogenomic signal (i.e., inspecting differing phylogenetic inferences, alternative support values, quartets, and phylogenetic networks) to better illuminate the most probable generic relationships within the subfamily. We found there are putative evolutionary trade-offs between wing shape, body size, and the interaction of fore- and hindwing (HW) shape. Namely, body size tends to decrease with increasing HW length but increases as forewing (FW) shape becomes more complex. Additionally, the type of HW (i.e., tail or no tail) a lineage possesses has a significant effect on the complexity of FW shape. We outline possible selective forces driving the complex HW shapes that make Arsenurinae, and silkmoths as a whole, so charismatic. [Anchored hybrid enrichment; Arsenurinae; geometric morphometrics; Lepidoptera; phylogenomics; Saturniidae.].


Subject(s)
Bombyx , Moths , Animals , Biological Evolution , Body Size , Phylogeny , Wings, Animal
6.
Oecologia ; 199(1): 217-228, 2022 May.
Article in English | MEDLINE | ID: mdl-35522293

ABSTRACT

Traffic noise is one of the leading causes of reductions in animal abundances near roads. Acoustic masking of conspecific signals and adventitious cues is one mechanism that likely causes animals to abandon loud areas. However, masking effects can be difficult to document in situ and the effects of infrequent noise events may be impractical to study. Here, we present the Soundscapes model, a stochastic individual-based model that dynamically models the listening areas of animals searching for acoustic resources ("searchers"). The model also studies the masking effects of noise for human detections of the searchers. The model is set in a landscape adjacent to a road. Noise produced by vehicles traveling on that road is represented by calibrated spectra that vary with speed. Noise propagation is implemented using ISO-9613 procedures. We present demonstration simulations that quantify declines in searcher efficiency and human detection of searchers at relatively low traffic volumes, fewer than 50 vehicles per hour. Traffic noise is pervasive, and the Soundscapes model offers an extensible tool to study the effects of noise on bioacoustics monitoring, point-count surveys, the restorative value of natural soundscapes, and auditory performance in an ecological context.


Subject(s)
Animals, Wild , Noise , Acoustics , Animals , Recreation
7.
Proc Natl Acad Sci U S A ; 116(45): 22657-22663, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31636187

ABSTRACT

Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths' evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution.


Subject(s)
Butterflies/genetics , Evolution, Molecular , Moths/genetics , Phylogeny , Animals , Butterflies/classification , Butterflies/physiology , Moths/classification , Moths/physiology
8.
Proc Biol Sci ; 288(1944): 20202689, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33563124

ABSTRACT

Predators frequently must detect and localize their prey in challenging environments. Noisy environments have been prevalent across the evolutionary history of predator-prey relationships, but now with increasing anthropogenic activities noise is becoming a more prominent feature of many landscapes. Here, we use the gleaning pallid bat, Antrozous pallidus, to investigate the mechanism by which noise disrupts hunting behaviour. Noise can primarily function to mask-obscure by spectrally overlapping a cue of interest, or distract-occupy an animal's attentional or other cognitive resources. Using band-limited white noise treatments that either overlapped the frequencies of a prey cue or did not overlap this cue, we find evidence that distraction is a primary driver of reduced hunting efficacy in an acoustically mediated predator. Under exposure to both noise types successful prey localization declined by half, search time nearly tripled, and bats used 25% more sonar pulses than when hunting in ambient conditions. Overall, the pallid bat does not seem capable of compensating for environmental noise. These findings have implications for mitigation strategies, specifically the importance of reducing sources of noise on the landscape rather than attempting to reduce the bandwidth of anthropogenic noise.


Subject(s)
Chiroptera , Echolocation , Animals , Noise , Predatory Behavior
9.
Proc Biol Sci ; 288(1956): 20210677, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34344177

ABSTRACT

The evolution of flapping flight is linked to the prolific success of insects. Across Insecta, wing morphology diversified, strongly impacting aerodynamic performance. In the presence of ecological opportunity, discrete adaptive shifts and early bursts are two processes hypothesized to give rise to exceptional morphological diversification. Here, we use the sister-families Sphingidae and Saturniidae to answer how the evolution of aerodynamically important traits is linked to clade divergence and through what process(es) these traits evolve. Many agile Sphingidae evolved hover feeding behaviours, while adult Saturniidae lack functional mouth parts and rely on a fixed energy budget as adults. We find that Sphingidae underwent an adaptive shift in wing morphology coincident with life history and behaviour divergence, evolving small high aspect ratio wings advantageous for power reduction that can be moved at high frequencies, beneficial for flight control. By contrast, Saturniidae, which do not feed as adults, evolved large wings and morphology which surprisingly does not reduce aerodynamic power, but could contribute to their erratic flight behaviour, aiding in predator avoidance. We suggest that after the evolution of flapping flight, diversification of wing morphology can be potentiated by adaptative shifts, shaping the diversity of wing morphology across insects.


Subject(s)
Moths , Animals , Biomechanical Phenomena , Flight, Animal , Humans , Insecta , Models, Biological , Wings, Animal
10.
Glob Chang Biol ; 27(17): 3987-4004, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34111313

ABSTRACT

The extent of artificial night light and anthropogenic noise (i.e., "light" and "noise") impacts is global and has the capacity to threaten species across diverse ecosystems. Existing research involving impacts of light or noise has primarily focused on noise or light alone and single species; however, these stimuli often co-occur and little is known about how co-exposure influences wildlife and if and why species may vary in their responses. Here, we had three aims: (1) to investigate species-specific responses to light, noise, and the interaction between the two using a spatially explicit approach to model changes in abundance of 140 prevalent bird species across North America, (2) to investigate responses to the interaction between light exposure and night length, and (3) to identify functional traits and habitat affiliations that explain variation in species-specific responses to these sensory stimuli with phylogenetically informed models. We found species that responded to noise exposure generally decreased in abundance, and the additional presence of light interacted synergistically with noise to exacerbate its negative effects. Moreover, the interaction revealed negative emergent responses for several species that only reacted when light and noise co-occurred. Additionally, an interaction between light and night length revealed 47 species increased in abundance with light exposure during longer nights. In addition to modifying behavior with optimal temperature and potential foraging opportunities, birds might be attracted to light, yet suffer inadvertent physiological consequences. The trait that most strongly related to avian response to light and noise was habitat affiliation. Specifically, species that occupy closed habitat were less tolerant of both sensory stressors compared to those that occupy open habitat. Further quantifying the contexts and intrinsic traits that explain how species respond to noise and light will be fundamental to understanding the ecological consequences of a world that is ever louder and brighter.


Subject(s)
Birds , Ecosystem , Animals , Animals, Wild , Noise/adverse effects , Species Specificity
11.
Proc Biol Sci ; 287(1941): 20201811, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33323075

ABSTRACT

Spending time in nature is known to benefit human health and well-being, but evidence is mixed as to whether biodiversity or perceptions of biodiversity contribute to these benefits. Perhaps more importantly, little is known about the sensory modalities by which humans perceive biodiversity and obtain benefits from their interactions with nature. Here, we used a 'phantom birdsong chorus' consisting of hidden speakers to experimentally increase audible birdsong biodiversity during 'on' and 'off' (i.e. ambient conditions) blocks on two trails to study the role of audition in biodiversity perception and self-reported well-being among hikers. Hikers exposed to the phantom chorus reported higher levels of restorative effects compared to those that experienced ambient conditions on both trails; however, increased restorative effects were directly linked to the phantom chorus on one trail and indirectly linked to the phantom chorus on the other trail through perceptions of avian biodiversity. Our findings add to a growing body of evidence linking mental health to nature experiences and suggest that audition is an important modality by which natural environments confer restorative effects. Finally, our results suggest that maintaining or improving natural soundscapes within protected areas may be an important component to maximizing human experiences.


Subject(s)
Biodiversity , Conservation of Natural Resources , Health , Vocalization, Animal , Animals , Birds , Ecosystem , Humans , Songbirds
13.
Proc Natl Acad Sci U S A ; 112(20): 6407-12, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25941377

ABSTRACT

The bat-moth arms race has existed for over 60 million y, with moths evolving ultrasonically sensitive ears and ultrasound-producing organs to combat bat predation. The evolution of these defenses has never been thoroughly examined because of limitations in simultaneously conducting behavioral and phylogenetic analyses across an entire group. Hawkmoths include >1,500 species worldwide, some of which produce ultrasound using genital stridulatory structures. However, the function and evolution of this behavior remain largely unknown. We built a comprehensive behavioral dataset of hawkmoth hearing and ultrasonic reply to sonar attack using high-throughput field assays. Nearly half of the species tested (57 of 124 species) produced ultrasound to tactile stimulation or playback of bat echolocation attack. To test the function of ultrasound, we pitted big brown bats (Eptesicus fuscus) against hawkmoths over multiple nights and show that hawkmoths jam bat sonar. Ultrasound production was immediately and consistently effective at thwarting attack and bats regularly performed catching behavior without capturing moths. We also constructed a fossil-calibrated, multigene phylogeny to study the evolutionary history and divergence times of these antibat strategies across the entire family. We show that ultrasound production arose in multiple groups, starting in the late Oligocene (∼ 26 Ma) after the emergence of insectivorous bats. Sonar jamming and bat-detecting ears arose twice, independently, in the Miocene (18-14 Ma) either from earless hawkmoths that produced ultrasound in response to physical contact only, or from species that did not respond to touch or bat echolocation attack.


Subject(s)
Adaptation, Biological/physiology , Biological Evolution , Echolocation/physiology , Hearing/physiology , Moths/physiology , Acoustic Stimulation , Animals , Base Sequence , Chiroptera/physiology , Molecular Sequence Data , Moths/genetics , Phylogeny , Physical Stimulation , Predatory Behavior/physiology , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Ultrasonics
14.
Proc Natl Acad Sci U S A ; 112(39): 12105-9, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26324924

ABSTRACT

Decades of research demonstrate that roads impact wildlife and suggest traffic noise as a primary cause of population declines near roads. We created a "phantom road" using an array of speakers to apply traffic noise to a roadless landscape, directly testing the effect of noise alone on an entire songbird community during autumn migration. Thirty-one percent of the bird community avoided the phantom road. For individuals that stayed despite the noise, overall body condition decreased by a full SD and some species showed a change in ability to gain body condition when exposed to traffic noise during migratory stopover. We conducted complementary laboratory experiments that implicate foraging-vigilance behavior as one mechanism driving this pattern. Our results suggest that noise degrades habitat that is otherwise suitable, and that the presence of a species does not indicate the absence of an impact.


Subject(s)
Animal Migration/physiology , Automobiles , Conservation of Natural Resources , Ecosystem , Noise, Transportation/adverse effects , Songbirds/physiology , Spatial Behavior/physiology , Animals , Idaho , Models, Biological
15.
Proc Natl Acad Sci U S A ; 112(9): 2812-6, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25730869

ABSTRACT

Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.


Subject(s)
Animal Structures/physiology , Biological Evolution , Chiroptera , Moths/physiology , Animal Structures/anatomy & histology , Animals , Food Chain
16.
J Environ Manage ; 203(Pt 1): 245-254, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28783021

ABSTRACT

Protected areas are critical locations worldwide for biodiversity preservation and offer important opportunities for increasingly urbanized humans to experience nature. However, biodiversity preservation and visitor access are often at odds and creative solutions are needed to safeguard protected area natural resources in the face of high visitor use. Managing human impacts to natural soundscapes could serve as a powerful tool for resolving these conflicting objectives. Here, we review emerging research that demonstrates that the acoustic environment is critical to wildlife and that sounds shape the quality of nature-based experiences for humans. Human-made noise is known to affect animal behavior, distributions and reproductive success, and the organization of ecological communities. Additionally, new research suggests that interactions with nature, including natural sounds, confer benefits to human welfare termed psychological ecosystem services. In areas influenced by noise, elevated human-made noise not only limits the variety and abundance of organisms accessible to outdoor recreationists, but also impairs their capacity to perceive the wildlife that remains. Thus soundscape changes can degrade, and potentially limit the benefits derived from experiences with nature via indirect and direct mechanisms. We discuss the effects of noise on wildlife and visitors through the concept of listening area and demonstrate how the perceptual worlds of both birds and humans are reduced by noise. Finally, we discuss how management of soundscapes in protected areas may be an innovative solution to safeguarding both and recommend several key questions and research directions to stimulate new research.


Subject(s)
Conservation of Natural Resources , Noise , Sound , Animals , Biota , Birds , Ecosystem , Humans
17.
Curr Biol ; 34(13): 2997-3004.e3, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38876101

ABSTRACT

Providing outdoor recreational opportunities to people and protecting wildlife are dual goals of many land managers. However, recreation is associated with negative effects on wildlife, ranging from increased stress hormones1,2 to shifts in habitat use3,4,5 to lowered reproductive success.6,7 Noise from recreational activities can be far reaching and have similar negative effects on wildlife, yet the impacts of these auditory encounters are less studied and are often unobservable. We designed a field-based experiment to both isolate and quantify the effects of recreation noise on several mammal species and test the effects of different recreation types and group sizes. Animals entering our sampling arrays triggered cameras to record video and broadcast recreation noise from speakers ∼20 m away. Our design allowed us to observe and classify behaviors of wildlife as they were exposed to acoustic stimuli. We found wildlife were 3.1-4.7 times more likely to flee and were vigilant for 2.2-3.0 times longer upon hearing recreation noise compared with controls (natural sounds and no noise). Wildlife abundance at our sampling arrays was 1.5 times lower the week following recreation noise deployments. Noise from larger groups of vocal hikers and mountain bikers caused the highest probability of fleeing (6-8 times more likely to flee). Elk were the most sensitive species to recreation noise, and large carnivores were the least sensitive. Our findings indicate that recreation noise alone caused anti-predator responses in wildlife, and as outdoor recreation continues to increase in popularity and geographic extent,8,9 noise from recreation may result in degraded or indirect wildlife habitat loss.


Subject(s)
Noise , Recreation , Animals , Noise/adverse effects , Behavior, Animal/physiology , Animals, Wild/physiology , Ecosystem
18.
PeerJ ; 12: e16592, 2024.
Article in English | MEDLINE | ID: mdl-38313034

ABSTRACT

Environmental noise knows no boundaries, affecting even protected areas. Noise pollution, originating from both external and internal sources, imposes costs on these areas. It is associated with adverse health effects, while natural sounds contribute to cognitive and emotional improvements as ecosystem services. When it comes to parks, individual visitors hold unique perceptions of soundscapes, which can be shaped by various factors such as their motivations for visiting, personal norms, attitudes towards specific sounds, and expectations. In this study, we utilized linear models and geospatial data to evaluate how visitors' personal norms and attitudes, the park's acoustic environment, visitor counts, and the acoustic environment of visitors' neighborhoods influenced their perception of soundscapes at Muir Woods National Monument. Our findings indicate that visitors' subjective experiences had a greater impact on their perception of the park's soundscape compared to purely acoustic factors like sound level of the park itself. Specifically, we found that motivations to hear natural sounds, interference caused by noise, sensitivity to noise, and the sound levels of visitors' home neighborhoods influenced visitors' perception of the park's soundscape. Understanding how personal factors shape visitors' soundscape perception can assist urban and non-urban park planners in effectively managing visitor experiences and expectations.


Subject(s)
Ecosystem , Recreation , Conservation of Natural Resources , Noise/adverse effects , Perception
19.
Proc Biol Sci ; 280(1773): 20132290, 2013 Dec 22.
Article in English | MEDLINE | ID: mdl-24197411

ABSTRACT

Many authors have suggested that the negative effects of roads on animals are largely owing to traffic noise. Although suggestive, most past studies of the effects of road noise on wildlife were conducted in the presence of the other confounding effects of roads, such as visual disturbance, collisions and chemical pollution among others. We present, to our knowledge, the first study to experimentally apply traffic noise to a roadless area at a landscape scale-thus avoiding the other confounding aspects of roads present in past studies. We replicated the sound of a roadway at intervals-alternating 4 days of noise on with 4 days off-during the autumn migratory period using a 0.5 km array of speakers within an established stopover site in southern Idaho. We conducted daily bird surveys along our 'Phantom Road' and in a nearby control site. We document over a one-quarter decline in bird abundance and almost complete avoidance by some species between noise-on and noise-off periods along the phantom road and no such effects at control sites-suggesting that traffic noise is a major driver of effects of roads on populations of animals.


Subject(s)
Behavior, Animal , Birds/physiology , Noise , Acoustic Stimulation , Animals , Population Density , Population Dynamics
20.
Biol Lett ; 9(4): 20130161, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23825084

ABSTRACT

Bats and moths have been engaged in aerial warfare for nearly 65 Myr. This arms race has produced a suite of counter-adaptations in moths, including bat-detecting ears. One set of defensive strategies involves the active production of sound; tiger moths' ultrasonic replies to bat attack have been shown to startle bats, warn the predators of bad taste and jam their biosonar. Here, we report that hawkmoths in the Choerocampina produce entirely ultrasonic sounds in response to tactile stimulation and the playback of biosonar attack sequences. Males do so by grating modified scraper scales on the outer surface of the genital valves against the inner margin of the last abdominal tergum. Preliminary data indicate that females also produce ultrasound to touch and playback of echolocation attack, but they do so with an entirely different mechanism. The anti-bat function of these sounds is unknown but might include startling, cross-family acoustic mimicry, warning of unprofitability or physical defence and/or jamming of echolocation. Hawkmoths present a novel and tractable system to study both the function and evolution of anti-bat defences.


Subject(s)
Chiroptera/physiology , Food Chain , Moths/physiology , Animals , Echolocation , Female , Malaysia , Male , Moths/anatomy & histology , Sex Characteristics , Sound , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL