Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Planta ; 248(3): 661-673, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29882156

ABSTRACT

MAIN CONCLUSION: Sucrose concentration in phloem sap was several times higher than in the cytosol of mesophyll cells. The results suggest that phloem loading involves active steps in the analyzed tree species. Phloem loading in source leaves is a key step for carbon partitioning and passive symplastic loading has been proposed for several tree species. However, experimental evidence to prove the potential for sucrose diffusion from mesophyll to phloem is rare. Here, we analyzed three tree species (two angiosperms, Fagus sylvatica, Magnolia kobus, and one gymnosperm, Gnetum gnemon) to investigate the proposed phloem loading mechanism. For this purpose, the minor vein structure and the sugar concentrations in phloem sap as well as in the subcellular compartments of mesophyll cells were investigated. The analyzed tree species belong to the open type minor vein subcategory. The sucrose concentration in the cytosol of mesophyll cells ranged between 75 and 165 mM and was almost equal to the vacuolar concentration. Phloem sap could be collected from F. sylvatica and M. kobus and the concentration of sucrose in phloem sap was about five- and 11-fold higher, respectively, than in the cytosol of mesophyll cells. Sugar exudation of cut leaves was decreased by p-chloromercuribenzenesulfonic acid, an inhibitor of sucrose-proton transporter. The results suggest that phloem loading of sucrose in the analyzed tree species involves active steps, and apoplastic phloem loading seems more likely.


Subject(s)
Fagus/metabolism , Gnetum/metabolism , Magnolia/metabolism , Phloem/metabolism , Sugars/metabolism , Biological Transport , Cytosol/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mesophyll Cells/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism , Trees , Vacuoles/metabolism
2.
Microb Cell Fact ; 17(1): 17, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29402276

ABSTRACT

BACKGROUND: Chimeric virus-like particles (VLP) allow the display of foreign antigens on their surface and have proved valuable in the development of safe subunit vaccines or drug delivery. However, finding an inexpensive production system and a VLP scaffold that allows stable incorporation of diverse, large foreign antigens are major challenges in this field. RESULTS: In this study, a versatile and cost-effective platform for chimeric VLP development was established. The membrane integral small surface protein (dS) of the duck hepatitis B virus was chosen as VLP scaffold and the industrially applied and safe yeast Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) as the heterologous expression host. Eight different, large molecular weight antigens of up to 412 amino acids derived from four animal-infecting viruses were genetically fused to the dS and recombinant production strains were isolated. In all cases, the fusion protein was well expressed and upon co-production with dS, chimeric VLP containing both proteins could be generated. Purification was accomplished by a downstream process adapted from the production of a recombinant hepatitis B VLP vaccine. Chimeric VLP were up to 95% pure on protein level and contained up to 33% fusion protein. Immunological data supported surface exposure of the foreign antigens on the native VLP. Approximately 40 mg of chimeric VLP per 100 g dry cell weight could be isolated. This is highly comparable to values reported for the optimized production of human hepatitis B VLP. Purified chimeric VLP were shown to be essentially stable for 6 months at 4 °C. CONCLUSIONS: The dS-based VLP scaffold tolerates the incorporation of a variety of large molecular weight foreign protein sequences. It is applicable for the display of highly immunogenic antigens originating from a variety of pathogens. The yeast-based production system allows cost-effective production that is not limited to small-scale fundamental research. Thus, the dS-based VLP platform is highly efficient for antigen presentation and should be considered in the development of future vaccines.


Subject(s)
Antigen Presentation , Pichia/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/isolation & purification , Animals , Ducks , Hepatitis B/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B Virus, Duck/immunology , Humans , Pichia/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Vaccines, Synthetic/economics , Vaccines, Synthetic/immunology , Vaccines, Virus-Like Particle/analysis , Vaccines, Virus-Like Particle/genetics
3.
J Biotechnol ; 306: 203-212, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31634510

ABSTRACT

Chimeric virus-like particles (VLP) are known as promising tools in the development of safe and effective subunit vaccines. Recently, a technology platform to produce VLP based on the small surface protein (dS) of the duck hepatitis B virus was established. In this study, chimeric VLP were investigated displaying the 195 N-terminal amino acids derived from the glycoprotein E2 of the bovine viral diarrhea virus (BVDV) on their surface. Isolation of the VLP from methylotrophic yeast Hansenula polymorpha was allowed upon co-expression of wild-type dS and a fusion protein composed of the BVDV-derived antigen N-terminally fused to the dS. It was shown the VLP could be purified by a process adapted from the production of a recombinant hepatitis B VLP vaccine. However, the process essentially depended on costly ultracentrifugation which is critical for low cost production. In novel process variants, this step was avoided after modification of the initial batch capture step, the introduction of a precipitation step and adjusting the ion exchange chromatography. The product yield could be improved by almost factor 8 to 93 ± 12 mg VLP protein per 100 g dry cell weight while keeping similar product purity and antigenicity. This allows scalable and cost efficient VLP production.


Subject(s)
Diarrhea Viruses, Bovine Viral/immunology , Pichia/metabolism , Vaccines, Virus-Like Particle/isolation & purification , Viral Envelope Proteins/metabolism , Viral Vaccines/isolation & purification , Amino Acid Sequence , Capsid Proteins/genetics , Diarrhea Viruses, Bovine Viral/genetics , Pichia/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Vaccines, Virus-Like Particle/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Vaccines/metabolism
4.
Biomed Mater ; 14(3): 035014, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30769335

ABSTRACT

INTRODUCTION: Calcific aortic valve disease (CAVD) is the most common acquired heart valve disease with complex underlying pathomechanisms that are yet not fully understood. Three-dimensional (3D) cell culture models as opposed to conventional two-dimensional (2D) techniques may reveal new aspects of CAVD and serve as a transitional platform between conventional 2D cell culture and in vivo experiments. METHODS: Here we report on fabrication and characterization of a novel 3D hydrogel derived from cell-free native aortic valves. A detailed analysis containing protein composition, rheological behavior, cytotoxic and proliferative effects as well as results of 3D cell culture experiments are presented. Moreover, this aortic valve derived hydrogel (AVdH) is compared to commercially available biological extracellular matrix (ECM) components to evaluate and classify AVdH with respect to other currently used ECM solutions, i.e. Collagen type I and Matrigel®. RESULTS: On the biochemical level, a complex composition of native proteins was detected. Using different techniques, including mass spectrometry with Gene Ontology network and enrichment analysis, different fundamental biological functions of AVdH were identified, including peptidase-, peptidase inhibitor-, growth- and binding activity. No cytotoxic effects were detected and AVdH showed positive effects on cell growth and proliferation in vitro when compared to Collagen type I and Matrigel®. CONCLUSION: These results suggest AVdH as an organotypic ECM supporting sophisticated 3D cell culture model studies, while mimicking the native environment of the aortic valve to a greater level for enhanced in vitro analyses.


Subject(s)
Aortic Valve/physiology , Biomimetic Materials , Cell Culture Techniques , Hydrogels/chemistry , Tissue Engineering/methods , Animals , Aortic Valve/pathology , Aortic Valve Stenosis/therapy , Calcinosis/therapy , Cell Proliferation , Cell-Free System , Collagen/chemistry , Drug Combinations , Extracellular Matrix/chemistry , Heart Valve Diseases/therapy , Kinetics , Laminin/chemistry , Proteoglycans/chemistry , Rheology , Sheep , Software
5.
PLoS One ; 14(9): e0221394, 2019.
Article in English | MEDLINE | ID: mdl-31483818

ABSTRACT

BACKGROUND: Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS: We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS: In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION: The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.


Subject(s)
Antigens, Protozoan/metabolism , Hepatitis B Virus, Duck/genetics , Malaria Vaccines/biosynthesis , Pichia/metabolism , Vaccines, Virus-Like Particle/biosynthesis , Animals , Antibodies, Blocking/immunology , Antigens, Protozoan/genetics , Ducks/virology , Humans , Malaria/prevention & control , Malaria Vaccines/immunology , Malaria Vaccines/isolation & purification , Plasmodium falciparum/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/isolation & purification , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/isolation & purification
6.
J Tissue Eng Regen Med ; 12(4): e2001-e2009, 2018 04.
Article in English | MEDLINE | ID: mdl-29272079

ABSTRACT

Severe dry eye syndrome resulting from lacrimal gland (LG) dysfunction can cause blindness, yet treatments remain palliative. In vitro reconstruction of LG tissue could provide a curative treatment. We aimed to combine epithelial cells with endothelial cells and mesenchymal stem cells (MSCs) to form a 3D functional unit. Epithelial cells and MSCs were isolated from porcine LG; endothelial cells were isolated from human foreskin. MSCs were characterised (flow cytometry and differentiation potential assays). All 3 cell types were combined on Matrigel and spheroid formation observed. Spheroids were characterised [immunohistochemistry (IHC) and transmission electron microscopy] and function assessed (ß-hexosaminidase assay). Spheroids were transferred to decellularised jejunum (SIS-Muc) in dynamic cultures for 1 week before further characterisation. MSCs did not express CD31 but expressed CD44 and CD105 and differentiated towards osteogenic and adipogenic lineages. Spheroids formed on Matrigel within 18 hr, contracting to ~10% of the well area (p < .005). IHC revealed presence of all 3 cells within spheroids. Transmission electron microscopy revealed cell-cell contacts and polarisation at the apical surface. In static cultures, function was increased in spheroids cf. monolayer controls (p < .05) but over 72 hr, spheroid function (p < .05), viability (p < .05), and proliferation decreased, whilst apoptosis increased. On SIS-Muc under dynamic culture, however, spheroids continued to proliferate to repopulate SIS-Muc. IHC revealed LG epithelial cells coexpressing pan-cytokeratin and lysozyme, as well as endothelial cells and MSCs and cells remained capable of responding to carbachol (p < .05). These spheroids could form the basis of a regenerative medicine treatment approach for dry eye syndrome. In vivo studies are required to evaluate this further.


Subject(s)
Epithelial Cells/metabolism , Lacrimal Apparatus/physiology , Mesenchymal Stem Cells/metabolism , Regeneration , Spheroids, Cellular/metabolism , Animals , Coculture Techniques , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/therapy , Epithelial Cells/cytology , Lacrimal Apparatus/cytology , Mesenchymal Stem Cells/cytology , Spheroids, Cellular/cytology , Swine
7.
Tissue Eng Part A ; 24(7-8): 682-693, 2018 04.
Article in English | MEDLINE | ID: mdl-28895502

ABSTRACT

Whole-organ engineering is an innovative field of regenerative medicine with growing translational perspectives. Recent reports suggest the feasibility of decellularization and repopulation of entire human size hearts. However, little is known about the susceptibility of epicardial adipose tissue (EAT) to decellularization. In this study, human size hearts of ovine donors were subjected to perfusion-based decellularization using detergent solutions. Upon basic histological evaluation and total DNA measurement myocardial regions prove largely decellularized while EAT demonstrated cellular remnants, further confirmed by transmission electron microscopy. Western blot analysis showed a significant reduction in lipid-associated and cardiac proteins. However, gas chromatography revealed unchanged proportional composition of fatty acids in EAT of decellularized whole hearts. Finally, cell culture medium conditioned with EAT from decellularized whole hearts had a significant deleterious effect on cardiac fibroblasts. These data suggest that perfusion decellularization of human size whole hearts provides inconsistent efficacy regarding donor material removal from myocardial regions as opposed to EAT.


Subject(s)
Adipose Tissue/cytology , Tissue Engineering/methods , Extracellular Matrix/chemistry , Humans , Microscopy, Electron, Transmission , Pericardium/cytology , Regenerative Medicine/methods , Tissue Scaffolds/chemistry
8.
Cell Death Dis ; 9(3): 286, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29459714

ABSTRACT

Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER. In addition, PXA depolarises the mitochondria similarly to protonophoric uncouplers such as CCCP, yet unlike these, it does not increase but rather inhibits cellular respiration and electron transport chain activity. The respiration-dependent mitochondrial network structure rapidly collapses into fragments upon PXA treatment. Surprisingly, this fragmentation is independent from the canonical mitochondrial fission and fusion mediators DRP1 and OPA1, and exclusively affects the inner mitochondrial membrane, leading to cristae disruption, release of pro-apoptotic proteins, and apoptosis. Taken together, our results suggest that PXA is a mitochondrial toxin with a novel mode of action that might prove a useful tool for the study of mitochondrial ion homoeostasis and membrane dynamics.


Subject(s)
Mitochondria/drug effects , Mitochondrial Membranes/drug effects , Mycotoxins/toxicity , Xanthones/toxicity , Animals , Ascomycota/metabolism , Calcium/metabolism , Cell Line , Electron Transport/drug effects , Electron Transport Chain Complex Proteins/metabolism , Humans , Mice , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mycotoxins/metabolism , Xanthones/metabolism
9.
Invest Ophthalmol Vis Sci ; 58(12): 5564-5574, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29079859

ABSTRACT

Purpose: Dry eye syndrome (DES) can cause blindness in severe cases, but mainly palliative treatments exist. A tissue-engineered lacrimal gland (LG) could provide a curative treatment. We aimed to evaluate decellularized porcine jejunum (SIS-Muc) as a scaffold for porcine LG epithelial cells. Methods: To evaluate SIS-Muc as a potential scaffold, basement membrane proteins in SIS-Muc and native LG were compared (immunohistochemistry [IHC]). Porcine LG epithelial cells cultured on plastic were characterized (immunocytochemistry), and their culture supernatant was compared with porcine tears (proteomics). Epithelial cells were then seeded onto SIS-Muc in either a static (cell crown) or dynamic culture (within a perfusion chamber) and metabolic (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and secretory capacities (ß-hexosaminidase assay), protein expression (IHC), and ultrastructure transmission electron microscopy (TEM) compared in each. Results: Collagen IV and laminin were found in both native LG and SIS-Muc. When cultured on plastic, LG epithelial cells expressed pan-cytokeratin, Rab3D, HexA, and produced mucins, but lysozyme and lactoferrin expression was nearly absent. Some porcine tear proteins (lipocalin-2 and lactoferrin) were found in LG epithelial cell culture supernatants. When LG cells were cultured on SIS-Muc, metabolic and ß-hexosaminidase activities were greater in dynamic cultures than static cultures (P < 0.05). In both static and dynamic cultures, cells expressed pan-cytokeratin, Rab3D, lysozyme, and lactoferrin and produced mucins, and TEM revealed cell polarization at the apical surface and cell-cell and cell-scaffold contacts. Conclusions: SIS-Muc is a suitable scaffold for LG cell expansion and may be useful toward reconstruction of LG tissue to provide a curative treatment for DES. Dynamic culture enhances cell metabolic and functional activities.


Subject(s)
Dry Eye Syndromes/surgery , Jejunum/transplantation , Lacrimal Apparatus/surgery , Ophthalmologic Surgical Procedures/methods , Plastic Surgery Procedures/methods , Tissue Engineering/methods , Animals , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Dry Eye Syndromes/diagnosis , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Jejunum/ultrastructure , Lacrimal Apparatus/ultrastructure , Microscopy, Electron, Transmission , Swine
SELECTION OF CITATIONS
SEARCH DETAIL