Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Proc Natl Acad Sci U S A ; 116(33): 16430-16435, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31346080

ABSTRACT

Hox genes are conserved transcription factor-encoding genes that specify the identity of body regions in bilaterally symmetrical animals. In the cricket Gryllus bimaculatus, a member of the hemimetabolous insect group Orthoptera, the induction of a subset of mesodermal cells to form the primordial germ cells (PGCs) is restricted to the second through the fourth abdominal segments (A2 to A4). In numerous insect species, the Hox genes Sex-combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx), and abdominal-A (abd-A) jointly regulate the identities of middle and posterior body segments, suggesting that these genes may restrict PGC formation to specific abdominal segments in G. bimaculatus Here we show that reducing transcript levels of some or all of these Hox genes results in supernumerary and/or ectopic PGCs, either individually or in segment-specific combinations, suggesting that the role of these Hox genes is to limit PGC development with respect to their number, segmental location, or both. These data provide evidence of a role for this ancient group of genes in PGC development.


Subject(s)
Germ Cells/growth & development , Gryllidae/genetics , Homeodomain Proteins/genetics , Insect Proteins/genetics , Amino Acid Sequence/genetics , Animals , Body Patterning/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Germ Cells/metabolism , Gryllidae/growth & development , Insecta/genetics , Insecta/growth & development
2.
Dev Genes Evol ; 228(5): 213-217, 2018 09.
Article in English | MEDLINE | ID: mdl-29987414

ABSTRACT

The arthropod body plan is comprised of several repeating segments along the anteroposterior body axis. This high degree of conservation, however, obfuscates the wide degree of underlying developmental variation present across and within arthropod groups. In chelicerates, the arthropod clade containing mites, spiders, scorpions, and horseshoe crabs, development is the most similar at the stages following early germ band segmentation. Comparative studies of chelicerate segmentation prior to these events, however, remain scarce. In order to elucidate and identify possible shared and derived aspects of chelicerate segmentation, we followed the early prosomal (anterior) segmentation in the model mite Archegozetes longisetosus using the expression of the conserved segmental marker hedgehog (hh). Our data indicate that the ancestral chelicerate likely utilized the gene hedgehog in a group of cells surrounding the germ disc. We also provide evidence that chelicerate segmentation, albeit via the conserved "short/intermediate germ" mode, progresses differently in the prosoma between Archegozetes and spiders and thus early, anterior segmentation in chelicerates is heterochronic.


Subject(s)
Gene Expression Regulation, Developmental , Mites/embryology , Animals , Body Patterning , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mites/genetics
3.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826321

ABSTRACT

Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2 , suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2 , disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio , which lacks dachshund-2 . Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle . Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology.

4.
Evol Dev ; 15(4): 280-92, 2013.
Article in English | MEDLINE | ID: mdl-23809702

ABSTRACT

The modular organization of arthropod limbs has lead to the evolution of a diversity of appendages within this phylum. A conserved trait within the arthropods is the utilization of a conserved set of regulatory genes that specify the appendage podomeres along the proximo-distal axis, termed the limb gap genes. These include extradenticle, homothorax, dachshund, and Distal-less. The deployment of these genes in the most basally branching arthropod group, the chelicerates, has only been studied in detail in two chelicerate groups, the harvestmen and spiders. Given the broad range of appendage diversity within the chelicerates, comparative studies of gap gene deployment in other chelicerates groups is needed. We therefore followed limb gap gene expression in a member of the largest chelicerate group, Acari, the oribatid mite Archegozetes longisetosus. We show that in contrast to many arthropod species, A. longisetosus expresses homothorax and extradenticle exclusively in the proximal portion of the appendages, which refutes the hypothesis of a sister-group relationship between chelicerates and myriapods. We also provide evidence that mites posses the ancestral chelicerate condition of possessing three-segmented chelicerae, which also express the gene dachshund. This adds support to the hypothesis that a cheliceral dachshund domain is ancestral to arachnids. Lastly, we provide evidence that the suppression of the fourth pair of walking legs, a putative synapomorphy for Acari, is accomplished by repressing the development of the medial and distal regions of the limb.


Subject(s)
Extremities/embryology , Gene Expression Regulation, Developmental , Mites/embryology , Animals , Body Patterning , Extremities/physiology , Gene Expression Profiling , Homeodomain Proteins/genetics , Microscopy, Confocal , Microscopy, Electron, Scanning , Mites/physiology , Spiders
5.
Evol Dev ; 14(4): 383-92, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22765209

ABSTRACT

Acari (mites and ticks) lack external segmentation, with the only indication of segmentation being the appendages of the prosoma (chelicerae, pedipalps, and four pairs of walking legs). Acari also have a mode of development in which the formation of the fourth walking leg is suppressed until the nymphal stages, following a hexapodal larva. To determine the number of segments in the posterior body region (opisthosoma) of mites, and to also determine when the fourth walking leg segment is delineated during embryogenesis, we followed the development of segmentation in the oribatid mite Archegozetes longisetosus using time-lapse and scanning electron microscopy, as well as in situ hybridizations of the A. longisetosus orthologues of the segmentation genes engrailed and hedgehog. Our data show that A. longisetosus patterns only two opisthosomal segments, indicating a large degree of segmental fusion or loss. Also, we show that the formation of the fourth walking leg segment is temporally tied to opisthosomal segmentation, the first such observation in any arachnid.


Subject(s)
Acari/embryology , Arthropod Proteins/metabolism , Body Patterning/physiology , Extremities/embryology , Hedgehog Proteins/metabolism , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Acari/ultrastructure , Animals , Arthropod Proteins/genetics , Extremities/anatomy & histology , Hedgehog Proteins/genetics , Homeodomain Proteins/genetics , Nymph/genetics , Nymph/metabolism , Transcription Factors/genetics
6.
Commun Biol ; 4(1): 733, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127782

ABSTRACT

Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping.


Subject(s)
Evolution, Molecular , Genome, Insect/genetics , Gryllidae/genetics , Insecta/genetics , Animals , DNA Methylation , DNA Transposable Elements/genetics , Female , Genes, Insect/genetics , Male , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA
7.
Oncotarget ; 11(44): 3943-3958, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33216833

ABSTRACT

Conventional cancer chemotherapies are not fully efficacious and do not target tumors, leading to significant treatment-related morbidities. A number of genetically attenuated cancer-targeting bacteria are being developed to safely target tumors in vivo. Here we report the toxicological, tumor-targeting, and efficacy profiles of Salmonella enterica serovar Typhimurium CRC2631 in a syngeneic and autochthonous TRAMP model of aggressive prostate cancer. CRC2631 preferentially colonize primary and metastatic tumors in the TRAMP animals. In addition, longitudinal whole genome sequencing studies of CRC2631 recovered from prostate tumor tissues demonstrate that CRC2631 is genetically stable. Moreover, tumor-targeted CRC2631 generates an anti-tumor immune response. Combination of CRC2631 with checkpoint blockade reduces metastasis burden. Collectively, these findings demonstrate a potential for CRC2631 in cancer immunotherapy strategies.

8.
Genetics ; 202(3): 1135-51, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26801180

ABSTRACT

The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Drosophila Proteins/physiology , Drosophila/embryology , Eye/embryology , Fetal Proteins/physiology , Microfilament Proteins/physiology , Mushroom Bodies/embryology , Nuclear Proteins/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Axons/physiology , Cell Polarity , Cytoskeleton/physiology , Drosophila/genetics , Drosophila Proteins/genetics , Fetal Proteins/genetics , Formins , GTP-Binding Proteins/physiology , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Microfilament Proteins/genetics , Mushroom Bodies/cytology , Nuclear Proteins/genetics , Organogenesis , Rotation
9.
Evodevo ; 4(1): 23, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23991696

ABSTRACT

BACKGROUND: Hox genes encode transcription factors that have an ancestral role in all bilaterian animals in specifying regions along the antero-posterior axis. In arthropods (insects, crustaceans, myriapods and chelicerates), Hox genes function to specify segmental identity, and changes in Hox gene expression domains in different segments have been causal to the evolution of novel arthropod morphologies. Despite this, the roles of Hox genes in arthropods that have secondarily lost or reduced their segmental composition have been relatively unexplored. Recent data suggest that acariform mites have a reduced segmental component of their posterior body tagma, the opisthosoma, in that only two segments are patterned during embryogenesis. This is in contrast to the observation that in many extinct and extant chelicerates (that is, horseshoe crabs, scorpions, spiders and harvestmen) the opisthosoma is comprised of ten or more segments. To explore the role of Hox genes in this reduced body region, we followed the expression of the posterior-patterning Hox genes Ultrabithorax (Ubx) and Abdominal-B (Abd-B), as well as the segment polarity genes patched (ptc) and engrailed (en), in the oribatid mite Archegozetes longisetosus. RESULTS: We find that the expression patterns of ptc are in agreement with previous reports of a reduced mite opisthosoma. In comparison to the ptc and en expression patterns, we find that Ubx and Abd-B are expressed in a single segment in A. longisetosus, the second opisthosomal segment. Abd-B is initially expressed more posteriorly than Ubx, that is, into the unsegmented telson; however, this domain clears in subsequent stages where it remains in the second opisthosomal segment. CONCLUSIONS: Our findings suggest that Ubx and Abd-B are expressed in a single segment in the opisthosoma. This is a novel observation, in that these genes are expressed in several segments in all studied arthropods. These data imply that a reduction in opisthosomal segmentation may be tied to a dramatically reduced Hox gene input in the opisthosoma.

SELECTION OF CITATIONS
SEARCH DETAIL