Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674015

ABSTRACT

Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.


Subject(s)
Disease Progression , Extracellular Vesicles , Leukemia, Myeloid, Acute , Stem Cell Niche , Humans , Extracellular Vesicles/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Tumor Microenvironment , Animals , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Bone Marrow/pathology , Bone Marrow/metabolism , Cell Communication , Signal Transduction , Drug Resistance, Neoplasm
2.
Molecules ; 28(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37110656

ABSTRACT

The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation. Surfaces exposing the synthetic polypeptide poly(L-lysine, L-leucine) (pKL) have previously been shown to bind heparin from human plasma in a selective and concentration-dependent manner. To evaluate its effect on hMSC expansion, pKL was immobilized onto self-assembled monolayers (SAMs). The pKL-SAMs were able to bind heparin, fibronectin and other serum proteins, as demonstrated by quartz crystal microbalance with dissipation (QCM-D) studies. hMSC adhesion and proliferation were significantly increased in pKL-SAMs compared to controls, most probably related to increased heparin and fibronectin binding to pKL surfaces. This proof-of-concept study highlights the potential of pKL surfaces to improve hMSC in vitro expansion possible through selective heparin/serum protein binding at the cell-material interface.


Subject(s)
Fibronectins , Peptides , Humans , Cell Communication , Heparin/pharmacology , Heparin/chemistry , Cell Proliferation
3.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35216431

ABSTRACT

Blood-contacting devices are increasingly important for the management of cardiovascular diseases. Poly(ethylene glycol) (PEG) hydrogels represent one of the most explored hydrogels to date. However, they are mechanically weak, which prevents their use in load-bearing biomedical applications (e.g., vascular grafts, cardiac valves). Graphene and its derivatives, which have outstanding mechanical properties, a very high specific surface area, and good compatibility with many polymer matrices, are promising candidates to solve this challenge. In this work, we propose the use of graphene-based materials as nanofillers for mechanical reinforcement of PEG hydrogels, and we obtain composites that are stiffer and stronger than, and as anti-adhesive as, neat PEG hydrogels. Results show that single-layer and few-layer graphene oxide can strengthen PEG hydrogels, increasing their stiffness up to 6-fold and their strength 14-fold upon incorporation of 4% w/v (40 mg/mL) graphene oxide. The composites are cytocompatible and remain anti-adhesive towards endothelial cells, human platelets and Staphylococcus aureus, similar to neat hydrogels. To the best of our knowledge, this is the first work to report such an increase of the tensile properties of PEG hydrogels using graphene-based materials as fillers. This work paves the way for the exploitation of PEG hydrogels as a backbone material for load-bearing applications.


Subject(s)
Graphite/chemistry , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Adhesives/chemistry , Biocompatible Materials/chemistry , Cell Line , Human Umbilical Vein Endothelial Cells , Humans , Polymers/chemistry , Tissue Engineering/methods
4.
Int J Mol Sci ; 21(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979110

ABSTRACT

In the scenario of personalized medicine, targeted therapies are currently the focus of cancer drug development. These drugs can block the growth and spread of tumor cells by interfering with key molecules involved in malignancy, such as receptor tyrosine kinases (RTKs). MET and Recepteur d'Origine Nantais (RON), which are RTKs frequently overactivated in gastric cancer, are glycoprotein receptors whose activation have been shown to be modulated by the cellular glycosylation. In this work, we address the role of sialylation in gastric cancer therapy using an innovative 3D high-throughput cell culture methodology that mimics better the in vivo tumor features. We evaluate the response to targeted treatment of glycoengineered gastric cancer cell models overexpressing the sialyltransferases ST3GAL4 or ST3GAL6 by subjecting 3D spheroids to the tyrosine kinase inhibitor crizotinib. We show here that 3D spheroids of ST3GAL4 or ST3GAL6 overexpressing MKN45 gastric cancer cells are less affected by the inhibitor. In addition, we disclose a potential compensatory pathway via activation of the Insulin Receptor upon crizotinib treatment. Our results suggest that cell sialylation, in addition of being involved in tumor progression, could play a critical role in the response to tyrosine kinase inhibitors in gastric cancer.


Subject(s)
Crizotinib/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/metabolism , Sialyltransferases/metabolism
5.
Molecules ; 25(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098281

ABSTRACT

Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.


Subject(s)
Glycosaminoglycans/chemistry , Hydrogels/chemistry , Polysaccharides/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Glycosaminoglycans/therapeutic use , Humans , Hydrogels/chemical synthesis , Hydrogels/therapeutic use , Intercellular Signaling Peptides and Proteins/chemistry , Polysaccharides/therapeutic use , Proteolysis/drug effects , Water/chemistry
6.
J Fluoresc ; 29(5): 1171-1181, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31493174

ABSTRACT

Glutaraldehyde (GTA) is a dialdehyde used as biological fixative and its interaction with proteins like bovine serum albumin (BSA) has been well described. Additionally, GTA is known to induce fluorescence when interacting with BSA molecules. In this work, it is developed a new sensitive and reproducible method for BSA quantification using GTA crosslinking to endow fluorescence to BSA molecules. This method can be used with standard lab equipment, providing a low cost, fast-tracking and straightforward approach for BSA quantification. Techniques such as confocal laser scanning microscopy (CLSM) and spectrofluorometry are applied for quantitative assessment, and widefield fluorescence microscopy for qualitative assessment. Qualitative and quantitative correlations between BSA content and GTA-induced fluorescence are verified. BSA concentrations as low as 62.5 µg/mL are detected using CLSM. This method can be highly advantageous for protein quantification in three-dimensional hydrogel systems, specially to evaluate protein loading/release in protein delivery or molecular imprinting systems. Graphical Abstract Preparation and analysis of glutaraldehyde-induced protein-fluorescence in 3D hydrogels. Alginate-methacrylate hydrogels containing varying amounts of bovine serum albumin (BSA) are prepared by photopolymerization and then incubated in glutaraldehyde solutions. Samples observation is performed using confocal laser scanning microscopy, spectrofluorometry and widefield fluorescence microscopy. Data is processed and retrieves a quantitative correlation between protein content and fluorescence levels.


Subject(s)
Fluorescence , Fluorescent Dyes/chemistry , Glutaral/chemistry , Serum Albumin, Bovine/analysis , Animals , Cattle , Fluorescent Dyes/chemical synthesis , Glutaral/chemical synthesis , Hydrogels/chemical synthesis , Hydrogels/chemistry , Particle Size
7.
Molecules ; 23(11)2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30380716

ABSTRACT

Cellular glycosylation plays a pivotal role in several molecular mechanisms controlling cell⁻cell recognition, communication, and adhesion. Thus, aberrant glycosylation has a major impact on the acquisition of malignant features in the tumor progression of patients. To mimic these in vivo features, an innovative high-throughput 3D spheroid culture methodology has been developed for gastric cancer cells. The assessment of cancer cell spheroids' physical characteristics, such as size, morphology and solidity, as well as the impact of glycosylation inhibitors on spheroid formation was performed applying automated image analysis. A detailed evaluation of key glycans and glycoproteins displayed by the gastric cancer spheroids and their counterpart cells cultured under conventional 2D conditions was performed. Our results show that, by applying 3D cell culture approaches, the model cell lines represented the differentiation features observed in the original tumors and the cellular glycocalix underwent striking changes, displaying increased expression of cancer-associated glycan antigens and mucin MUC1, ultimately better simulating the glycosylation phenotype of the gastric tumor.


Subject(s)
Carcinoma/metabolism , Cell Culture Techniques/methods , Spheroids, Cellular/metabolism , Stomach Neoplasms/metabolism , Carcinoma/genetics , Carcinoma/pathology , Cell Communication/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Glycosylation , Humans , Spheroids, Cellular/pathology , Stomach Neoplasms/pathology
8.
Biomacromolecules ; 15(1): 380-90, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24345197

ABSTRACT

Hydrogels with the potential to provide minimally invasive cell delivery represent a powerful tool for tissue-regeneration therapies. In this context, entrapped cells should be able to escape the matrix becoming more available to actively participate in the healing process. Here, we analyzed the performance of proteolytically degradable alginate hydrogels as vehicles for human mesenchymal stem cells (hMSC) transplantation. Alginate was modified with the matrix metalloproteinase (MMP)-sensitive peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG), which did not promote dendritic cell maturation in vitro, neither free nor conjugated to alginate chains, indicating low immunogenicity. hMSC were entrapped within MMP-sensitive and MMP-insensitive alginate hydrogels, both containing cell-adhesion RGD peptides. Softer (2 wt % alginate) and stiffer (4 wt % alginate) matrices were tested. When embedded in a Matrigel layer, hMSC-laden MMP-sensitive alginate hydrogels promoted more extensive outward cell migration and invasion into the tissue mimic. In vivo, after 4 weeks of subcutaneous implantation in a xenograft mouse model, hMSC-laden MMP-sensitive alginate hydrogels showed higher degradation and host tissue invasion than their MMP-insensitive equivalents. In both cases, softer matrices degraded faster than stiffer ones. The transplanted hMSC were able to produce their own collagenous extracellular matrix, and were located not only inside the hydrogels, but also outside, integrated in the host tissue. In summary, injectable MMP-sensitive alginate hydrogels can act as localized depots of cells and confer protection to transplanted cells while facilitating tissue regeneration.


Subject(s)
Alginates/administration & dosage , Drug Delivery Systems/methods , Hydrogels/administration & dosage , Matrix Metalloproteinases/administration & dosage , Mesenchymal Stem Cells/drug effects , Alginates/chemistry , Animals , Cells, Cultured , Glucuronic Acid/administration & dosage , Glucuronic Acid/chemistry , Hexuronic Acids/administration & dosage , Hexuronic Acids/chemistry , Humans , Hydrogels/chemistry , Injections , Male , Matrix Metalloproteinases/chemistry , Mesenchymal Stem Cells/physiology , Mice , Mice, SCID
9.
Adv Mater ; 36(2): e2307673, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37961933

ABSTRACT

Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis. At early stages, liver disease can be reverted, but as disease progresses, reversion is no longer possible, and there is no cure. Research for new therapies is hampered by the lack of adequate models that replicate the mechanical properties and biochemical stimuli present in the fibrotic liver. Fibrosis is associated with changes in the composition of the extracellular matrix that directly influence cell behavior. Biomaterials could play an essential role in better emulating the disease microenvironment. In this paper, the recent and cutting-edge biomaterials used for creating in vitro models of human liver fibrosis are revised, in combination with cells, bioprinting, and/or microfluidics. These technologies have been instrumental to replicate the intricate structure of the unhealthy tissue and promote medium perfusion that improves cell growth and function, respectively. A comprehensive analysis of the impact of material hints and cell-material interactions in a tridimensional context is provided.


Subject(s)
Bioprinting , Microfluidics , Humans , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Liver Cirrhosis , Fibrosis , Bioprinting/methods , Printing, Three-Dimensional , Tissue Engineering/methods
10.
Acta Biomater ; 181: 98-116, 2024 06.
Article in English | MEDLINE | ID: mdl-38697382

ABSTRACT

The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.


Subject(s)
Antimicrobial Peptides , Bacteria , Biocompatible Materials , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
11.
Acta Biomater ; 173: 351-364, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37984630

ABSTRACT

Developing biocompatible, non-fouling and biodegradable hydrogels for blood-contacting devices remains a demanding challenge. Such materials should promote natural healing, prevent clotting, and undergo controlled degradation. This study evaluates the biocompatibility and biodegradation of degradable poly(2-hydroxyethyl methacrylate) (d-pHEMA) hydrogels with or without reinforcement with oxidized few-layer graphene (d-pHEMA/M5ox) in a long term implantation in rats, assessing non-desired side-effects (irritation, chronic toxicity, immune response). Subcutaneous implantation over 6 months revealed degradation of both hydrogels, despite slower for d-pHEMA/M5ox, with degradation products found in intracellular vesicles. No inflammation nor infection at implantation areas were observed, and no histopathological findings were detected in parenchymal organs. Immunohistochemistry confirmed d-pHEMA and d-pHEMA/M5ox highly anti-adhesiveness. Gene expression of macrophages markers revealed presence of both M1 and M2 macrophages at all timepoints. M1/M2 profile after 6 months reveals an anti-inflammatory environment, suggesting no chronic inflammation, as also demonstrated by cytokines (IL-α, TNF-α and IL-10) analysis. Overall, modification of pHEMA towards a degradable material was successfully achieved without evoking a loss of its inherent properties, specially its anti-adhesiveness and biocompatibility. Therefore, these hydrogels hold potential as blank-slate for further modifications that promote cellular adhesion/proliferation for tissue engineering applications, namely for designing blood contacting devices with different load bearing requirements. STATEMENT OF SIGNIFICANCE: Biocompatibility, tunable biodegradation kinetics, and suitable immune response with lack of chronic toxicity and irritation, are key features in degradable blood contact devices that demand long-term exposure. We herein evaluate the 6-month in vivo performance of a degradable and hemocompatible anti-adhesive hydrogel based in pHEMA, and its mechanically reinforced formulation with few-layer graphene oxide. This subcutaneous implantation in a rat model, shows gradual degradation with progressive changes in material morphology, and no evidence of local inflammation in surrounding tissue, neither signs of inflammation or adverse reactions in systemic organs, suggesting biocompatibility of degradation products. Such hydrogels exhibit great potential as a blank slate for tissue engineering applications, including for blood contact, where cues for specific cells can be incorporated.


Subject(s)
Graphite , Rats , Animals , Graphite/pharmacology , Polyhydroxyethyl Methacrylate/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Engineering , Inflammation , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
12.
Carbohydr Polym ; 320: 121226, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659815

ABSTRACT

Alginate (ALG) is a widely used biomaterial to create artificial extracellular matrices (ECM) for tissue engineering. Since it does not degrade in the human body, imparting proteolytic sensitivity to ALG hydrogels leverages their properties as ECM-mimics. Herein, we explored the strain-promoted azide-alkyne cycloaddition (SPAAC) as a biocompatible and bio-orthogonal click-chemistry to graft cyclooctyne-modified alginate (ALG-K) with bi-azide-functionalized PVGLIG peptides. These are sensitive to matrix metalloproteinase (MMP) and may act as crosslinkers. The ALG-K-PVGLIG conjugates (50, 125, and 250 µM PVGLIG) were characterized for peptide incorporation, crosslinking ability (double-end grafting), and enzymatic liability. For producing cell-permissive multifunctional 3D matrices for dermal fibroblast culture, oxidized ALG-K was grafted with PVGLIG and with RGD peptides for cell-adhesion. SPAAC reactions were performed immediately before cell-laden hydrogel formation by secondary ionic-crosslinking, considerably reducing the steps and time of preparation. Hydrogels with intermediate PVGLIG concentration (125 µM) presented slightly higher stiffness while promoting extensive cell spreading and higher degree of cell-cell interconnections, likely favored by cell-driven proteolytic remodeling of the network. The hydrogel-embedded cells were able to produce their own pericellular ECM, expressed MMP-2 and 14, and secreted PVGLIG-degrading enzymes. By recapitulating key ECM-like features, these hydrogels provide biologically relevant 3D matrices for soft tissue regeneration.

13.
Acta Biomater ; 164: 253-268, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37121371

ABSTRACT

Degradable biomaterials for blood-contacting devices (BCDs) are associated with weak mechanical properties, high molecular weight of the degradation products and poor hemocompatibility. Herein, the inert and biocompatible FDA approved poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel was turned into a degradable material by incorporation of different amounts of a hydrolytically labile crosslinking agent, pentaerythritol tetrakis(3-mercaptopropionate). In situ addition of 1wt.% of oxidized graphene-based materials (GBMs) with different lateral sizes/thicknesses (single-layer graphene oxide and oxidized forms of few-layer graphene materials) was performed to enhance the mechanical properties of hydrogels. An ultimate tensile strength increasing up to 0.2 MPa (293% higher than degradable pHEMA) was obtained using oxidized few-layer graphene with 5 µm lateral size. Moreover, the incorporation of GBMs has demonstrated to simultaneously tune the degradation time, which ranged from 2 to 4 months. Notably, these features were achieved keeping not only the intrinsic properties of inert pHEMA regarding water uptake, wettability and cytocompatibility (short and long term), but also the non-fouling behavior towards human cells, platelets and bacteria. This new pHEMA hydrogel with degradation and biomechanical performance tuned by GBMs, can therefore be envisioned for different applications in tissue engineering, particularly for BCDs where non-fouling character is essential. STATEMENT OF SIGNIFICANCE: Suitable mechanical properties, low molecular weight of the degradation products and hemocompatibility are key features in degradable blood contacting devices (BCDs), and pave the way for significant improvement in the field. In here, a hydrogel with outstanding anti-adhesiveness (pHEMA) provides hemocompatibility, the presence of a degradable crosslinker provides degradability, and incorporation of graphene oxide reestablishes its strength, allowing tuning of both degradation and mechanical properties. Notably, these hydrogels simultaneously provide suitable water uptake, wettability, cytocompatibility (short and long term), no acute inflammatory response, and non-fouling behavior towards endothelial cells, platelets and bacteria. Such results highlight the potential of these hydrogels to be envisioned for applications in tissue engineered BCDs, namely as small diameter vascular grafts.


Subject(s)
Graphite , Hydrogels , Humans , Hydrogels/pharmacology , Polyhydroxyethyl Methacrylate , Graphite/pharmacology , Endothelial Cells , Biocompatible Materials/pharmacology , Water
14.
Mater Today Bio ; 19: 100604, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36969695

ABSTRACT

The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D. Alginate was grafted with hydrophobic cyclooctyne groups (ALG-K), yielding amphiphilic derivatives with self-associative potential and ionic crosslinking ability. This allowed the formation of microstructured ALG-KH hydrogels, triggered by the spontaneous segregation between hydrophobic/hydrophilic regions of the polymer that generated 3D networks with stiffer microdomains within a softer lattice. The azide-reactivity of cyclooctynes also allowed ALG-K functionalization with bioactive peptides via cytocompatible strain-promoted azide-alkyne cycloaddition (SPAAC). Hydrogel-embedded mesenchymal stem cells (MSCs) were able to integrate spatial information and to mechano-sense the 3D topography, which regulated cell shape and stress fiber organization. MSCs clusters initially formed on microstructured regions could then act as seeds for neo-tissue formation, inducing cells to produce their own ECM and self-organize into multicellular structures throughout the hydrogel. By combining 3D topography, click functionalization, and injectability, using a single polymer, ALG-K hydrogels provide a unique cell delivery platform for tissue regeneration.

15.
Sci Transl Med ; 15(687): eabo1930, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36921032

ABSTRACT

Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear. In this study, we found that presence of microbial-associated mannose structures at the surface of the kidney triggers the recognition of DC-SIGN-expressing γδ T cells, inducing a pathogenic interleukin-17a (IL-17a)-mediated autoimmune response. Mice lacking Mgat5, which have a higher abundance of mannose structures in the kidney, displayed increased γδ T cell infiltration into the kidney that was associated with spontaneous development of lupus in older mice. N-acetylglucosamine supplementation, which promoted biosynthesis of tolerogenic branched N-glycans in the kidney, was found to inhibit γδ T cell infiltration and control disease development. Together, this work reveals a mannose-γδ T cell-IL-17a axis in SLE immunopathogenesis and highlights glycometabolic reprogramming as a therapeutic strategy for autoimmune disease treatment.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Animals , Mice , Autoimmunity , Mannose , Interleukin-17/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism
16.
J Control Release ; 341: 414-430, 2022 01.
Article in English | MEDLINE | ID: mdl-34871636

ABSTRACT

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.


Subject(s)
Intestinal Mucosa , Animals , Caco-2 Cells , Endothelium , Epithelium , Humans , Intestinal Mucosa/metabolism , Permeability
17.
Front Cell Infect Microbiol ; 12: 920204, 2022.
Article in English | MEDLINE | ID: mdl-35873153

ABSTRACT

Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.


Subject(s)
Antimalarials , Malaria, Vivax , Malaria , Animals , Bone Marrow/parasitology , Disease Models, Animal , Humans , Malaria/drug therapy , Malaria, Vivax/prevention & control , Mice , Plasmodium vivax
18.
Front Bioeng Biotechnol ; 9: 647031, 2021.
Article in English | MEDLINE | ID: mdl-33791288

ABSTRACT

The stromal microenvironment of breast tumors, namely the vasculature, has a key role in tumor development and metastatic spread. Tumor angiogenesis is a coordinated process, requiring the cooperation of cancer cells, stromal cells, such as fibroblasts and endothelial cells, secreted factors and the extracellular matrix (ECM). In vitro models capable of capturing such complex environment are still scarce, but are pivotal to improve success rates in drug development and screening. To address this challenge, we developed a hybrid alginate-based 3D system, combining hydrogel-embedded mammary epithelial cells (parenchymal compartment) with a porous scaffold co-seeded with fibroblasts and endothelial cells (vascularized stromal compartment). For the stromal compartment, we used porous alginate scaffolds produced by freeze-drying with particle leaching, a simple, low-cost and non-toxic approach that provided storable ready-to-use scaffolds fitting the wells of standard 96-well plates. Co-seeded endothelial cells and fibroblasts were able to adhere to the surface, spread and organize into tubular-like structures. For the parenchymal compartment, a designed alginate gel precursor solution load with mammary epithelial cells was added to the pores of pre-vascularized scaffolds, forming a hydrogel in situ by ionic crosslinking. The 3D hybrid system supports epithelial morphogenesis in organoids/tumoroids and endothelial tubulogenesis, allowing heterotypic cell-cell and cell-ECM interactions, while presenting excellent experimental tractability for whole-mount confocal microscopy, histology and mild cell recovery for down-stream analysis. It thus provides a unique 3D in vitro platform to dissect epithelial-stromal interactions and tumor angiogenesis, which may assist in the development of selective and more effective anticancer therapies.

19.
Biomater Sci ; 9(19): 6510-6527, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34582531

ABSTRACT

Healing of intestinal chronic wounds remains a major challenge as current therapies are ineffective in promoting proper regeneration of the damaged intestinal wall. An innovative concept, based on a bioinspired multifunctional alginate-melanin hybrid 3D scaffold, to target both inflammatory and regenerative processes, is proposed herein. Hydrogel-entrapped melanin nanoparticles demonstrated free-radical scavenging activity, supported by the neutralization of free-radicals in solution (90%), and the in vitro capture of reactive oxygen species (ROS) produced by stimulated macrophages in an inflammatory-mimicking environment. Notably, scaffolds could be reused (at least 3 times), while maintaining these properties. The extracellular matrix (ECM)-inspired biomaterial, containing protease-sensitive and integrin-binding domains, exhibited remarkable ability for cell colonisation. Human intestinal fibroblasts and epithelial cells (Caco-2) co-seeded on lyophilized scaffolds were able to invade/colonize the construct and produce endogenous ECM, key for neo-tissue formation and re-epithelialization. Scaffolds presented tuneable mechanical properties and could be used both in hydrated and freeze-dried states, maintaining their performance upon rehydration, which are attractive features for clinical application. Collectively, our results highlight the potential of biofunctionalized alginate-melanin hybrid 3D scaffolds as multi-therapeutic patches for modulating inflammation and tissue regeneration in chronic intestinal wounds, which address a major but still unmet clinical need. The proposed multi-therapeutic strategy may potentially be extended to the treatment of other chronic wounds.


Subject(s)
Hydrogels , Tissue Scaffolds , Caco-2 Cells , Extracellular Matrix , Humans , Inflammation/drug therapy
20.
Nanomaterials (Basel) ; 11(2)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498669

ABSTRACT

Gastric cancer (GC) remains a major cause of death worldwide mainly because of the late detection in advanced stage. Recently, we proposed CD44v6 as a relevant marker for early detection of GC, opening new avenues for GC-targeted theranostics. Here, we designed a modular nanoscale system that selectively targets CD44v6-expressing GC cells by the site-oriented conjugation of a new-engineered CD44v6 half-antibody fragment to maleimide-modified polystyrene nanoparticles (PNPs) via an efficient bioorthogonal thiol-Michael addition click chemistry. PNPs with optimal particle size (200 nm) for crossing a developed biomimetic CD44v6-associated GC stromal model were further modified with a heterobifunctional maleimide crosslinker and click conjugated to the novel CD44v6 half-antibody fragment, obtained by chemical reduction of full antibody, without affecting its bioactivity. Collectively, our results confirmed the specific targeting ability of CD44v6-PNPs to CD44v6-expressing cells (1.65-fold higher than controls), highlighting the potential of CD44v6 half-antibody conjugated nanoparticles as promising and clinically relevant tools for the early diagnosis and therapy of GC. Additionally, the rational design of our nanoscale system may be explored for the development of several other nanotechnology-based disease-targeted approaches.

SELECTION OF CITATIONS
SEARCH DETAIL