Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 185(1): 184-203.e19, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34963056

ABSTRACT

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.


Subject(s)
Censuses , Neoplasms/genetics , Neoplasms/immunology , Transcriptome/genetics , Tumor Microenvironment/immunology , Biomarkers, Tumor , Cluster Analysis , Cohort Studies , Computational Biology/methods , Flow Cytometry/methods , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/classification , Neoplasms/pathology , RNA-Seq/methods , San Francisco , Universities
2.
Cell ; 177(3): 556-571.e16, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955881

ABSTRACT

Differentiation of proinflammatory CD4+ conventional T cells (Tconv) is critical for productive antitumor responses yet their elicitation remains poorly understood. We comprehensively characterized myeloid cells in tumor draining lymph nodes (tdLN) of mice and identified two subsets of conventional type-2 dendritic cells (cDC2) that traffic from tumor to tdLN and present tumor-derived antigens to CD4+ Tconv, but then fail to support antitumor CD4+ Tconv differentiation. Regulatory T cell (Treg) depletion enhanced their capacity to elicit strong CD4+ Tconv responses and ensuing antitumor protection. Analogous cDC2 populations were identified in patients, and as in mice, their abundance relative to Treg predicts protective ICOS+ PD-1lo CD4+ Tconv phenotypes and survival. Further, in melanoma patients with low Treg abundance, intratumoral cDC2 density alone correlates with abundant CD4+ Tconv and with responsiveness to anti-PD-1 therapy. Together, this highlights a pathway that restrains cDC2 and whose reversal enhances CD4+ Tconv abundance and controls tumor growth.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Diphtheria Toxin/immunology , Forkhead Transcription Factors/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Chemokine/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment
3.
Nat Immunol ; 21(8): 835-847, 2020 08.
Article in English | MEDLINE | ID: mdl-32690952

ABSTRACT

Natural killer (NK) cells belong to the innate immune system and contribute to protecting the host through killing of infected, foreign, stressed or transformed cells. Additionally, via cellular cross-talk, NK cells orchestrate antitumor immune responses. Hence, significant efforts have been undertaken to exploit the therapeutic properties of NK cells in cancer. Current strategies in preclinical and clinical development include adoptive transfer therapies, direct stimulation, recruitment of NK cells into the tumor microenvironment (TME), blockade of inhibitory receptors that limit NK cell functions, and therapeutic modulation of the TME to enhance antitumor NK cell function. In this Review, we introduce the NK cell-cancer cycle to highlight recent advances in NK cell biology and to discuss the progress and problems of NK cell-based cancer immunotherapies.


Subject(s)
Immunotherapy/methods , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , Humans , Tumor Microenvironment/immunology
4.
J Immunol ; 193(3): 1459-67, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24990083

ABSTRACT

Pseudomonas aeruginosa secrete N-(3-oxododecanoyl)-homoserine lactone (HSL-C12) as a quorum-sensing molecule to regulate bacterial gene expression. Because HSL-C12 is membrane permeant, multiple cell types in P. aeruginosa-infected airways may be exposed to HSL-C12, especially adjacent to biofilms where local (HSL-C12) may be high. Previous reports showed that HSL-C12 causes both pro- and anti-inflammatory effects. To characterize HSL-C12's pro- and anti-inflammatory effects in host cells, we measured protein synthesis, NF-κB activation, and KC (mouse IL-8) and IL-6 mRNA and protein secretion in wild-type mouse embryonic fibroblasts (MEF). To test the role of the endoplasmic reticulum stress inducer, PERK we compared these responses in PERK(-/-) and PERK-corrected PERK(-/-) MEF. During 4-h treatments of wild-type MEF, HSL-C12 potentially activated NF-κB p65 by preventing the resynthesis of IκB and increased transcription of KC and IL-6 genes (quantitative PCR). HSL-C12 also inhibited secretion of KC and/or IL-6 into the media (ELISA) both in control conditions and also during stimulation by TNF-α. HSL-C12 also activated PERK (as shown by increased phosphorylation of eI-F2α) and inhibited protein synthesis (as measured by incorporation of [(35)S]methionine by MEF). Comparisons of PERK(-/-) and PERK-corrected MEF showed that HSL-C12's effects were explained in part by activation of PERK→phosphorylation of eI-F2α→inhibition of protein synthesis→reduced IκBα production→activation of NF-κB→increased transcription of the KC gene but reduced translation and secretion of KC. HSL-C12 may be an important modulator of early (up to 4 h) inflammatory signaling in P. aeruginosa infections.


Subject(s)
4-Butyrolactone/analogs & derivatives , Eukaryotic Initiation Factor-2/physiology , Inflammation Mediators/physiology , Pseudomonas aeruginosa/immunology , Quorum Sensing/immunology , Signal Transduction/immunology , eIF-2 Kinase/physiology , 4-Butyrolactone/physiology , Animals , Cell Line , Endoplasmic Reticulum Stress/immunology , Mice , eIF-2 Kinase/deficiency
5.
EMBO J ; 30(7): 1289-301, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21343912

ABSTRACT

Transcriptional cofactors are essential for proper embryonic development. One such cofactor in Drosophila, Degringolade (Dgrn), encodes a RING finger/E3 ubiquitin ligase. Dgrn and its mammalian ortholog RNF4 are SUMO-targeted ubiquitin ligases (STUbLs). STUbLs bind to SUMOylated proteins via their SUMO interaction motif (SIM) domains and facilitate substrate ubiquitylation. In this study, we show that Dgrn is a negative regulator of the repressor Hairy and its corepressor Groucho (Gro/transducin-like enhancer (TLE)) during embryonic segmentation and neurogenesis, as dgrn heterozygosity suppresses Hairy mutant phenotypes and embryonic lethality. Mechanistically Dgrn functions as a molecular selector: it targets Hairy for SUMO-independent ubiquitylation that inhibits the recruitment of its corepressor Gro, without affecting the recruitment of its other cofactors or the stability of Hairy. Concomitantly, Dgrn specifically targets SUMOylated Gro for sequestration and antagonizes Gro functions in vivo. Our findings suggest that by targeting SUMOylated Gro, Dgrn serves as a molecular switch that regulates cofactor recruitment and function during development. As Gro/TLE proteins are conserved universal corepressors, this may be a general paradigm used to regulate the Gro/TLE corepressors in other developmental processes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila/growth & development , Repressor Proteins/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Animals , Gene Expression Regulation, Developmental , Sumoylation
6.
J Immunol ; 190(12): 6329-39, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23686480

ABSTRACT

Legionella pneumophila is an intracellular bacterial pathogen that is the cause of a severe pneumonia in humans called Legionnaires' disease. A key feature of L. pneumophila pathogenesis is the rapid influx of neutrophils into the lungs, which occurs in response to signaling via the IL-1R. Two distinct cytokines, IL-1α and IL-1ß, can stimulate the type I IL-1R. IL-1ß is produced upon activation of cytosolic sensors called inflammasomes that detect L. pneumophila in vitro and in vivo. Surprisingly, we find no essential role for IL-1ß in neutrophil recruitment to the lungs in response to L. pneumophila. Instead, we show that IL-1α is a critical initiator of neutrophil recruitment to the lungs of L. pneumophila-infected mice. We find that neutrophil recruitment in response to virulent L. pneumophila requires the production of IL-1α specifically by hematopoietic cells. In contrast to IL-1ß, the innate signaling pathways that lead to the production of IL-1α in response to L. pneumophila remain poorly defined. In particular, although we confirm a role for inflammasomes for initiation of IL-1ß signaling in vivo, we find no essential role for inflammasomes in production of IL-1α. Instead, we propose that a novel host pathway, perhaps involving inhibition of host protein synthesis, is responsible for IL-1α production in response to virulent L. pneumophila. Our results establish IL-1α as a critical initiator of the inflammatory response to L. pneumophila in vivo and point to an important role for IL-1α in providing an alternative to inflammasome-mediated immune responses in vivo.


Subject(s)
Inflammation/immunology , Interleukin-1alpha/immunology , Legionnaires' Disease/immunology , Neutrophil Infiltration/immunology , Signal Transduction/immunology , Animals , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Legionella pneumophila , Mice , Mice, Inbred C57BL , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction
7.
Development ; 138(9): 1759-69, 2011 May.
Article in English | MEDLINE | ID: mdl-21486924

ABSTRACT

Degringolade (Dgrn) encodes a Drosophila SUMO-targeted ubiquitin ligase (STUbL) protein similar to that of mammalian RNF4. Dgrn facilitates the ubiquitylation of the HES protein Hairy, which disrupts the repressive activity of Hairy by inhibiting the recruitment of its cofactor Groucho. We show that Hey and all HES family members, except Her, interact with Dgrn and are substrates for its E3 ubiquitin ligase activity. Dgrn displays dynamic subcellular localization, accumulates in the nucleus at times when HES family members are active and limits Hey and HES family activity during sex determination, segmentation and neurogenesis. We show that Dgrn interacts with the Notch signaling pathway by it antagonizing the activity of E(spl)-C proteins. dgrn null mutants are female sterile, producing embryos that arrest development after two or three nuclear divisions. These mutant embryos exhibit fragmented or decondensed nuclei and accumulate higher levels of SUMO-conjugated proteins, suggesting a role for Dgrn in genome stability.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/embryology , Embryonic Development/genetics , Homeodomain Proteins/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Cells, Cultured , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Female , Homeodomain Proteins/genetics , Male , Protein Binding/physiology , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics
8.
PLoS Pathog ; 7(2): e1001289, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21390206

ABSTRACT

The intracellular bacterial pathogen Legionella pneumophila causes an inflammatory pneumonia called Legionnaires' Disease. For virulence, L. pneumophila requires a Dot/Icm type IV secretion system that translocates bacterial effectors to the host cytosol. L. pneumophila lacking the Dot/Icm system is recognized by Toll-like receptors (TLRs), leading to a canonical NF-κB-dependent transcriptional response. In addition, L. pneumophila expressing a functional Dot/Icm system potently induces unique transcriptional targets, including proinflammatory genes such as Il23a and Csf2. Here we demonstrate that this Dot/Icm-dependent response, which we term the effector-triggered response (ETR), requires five translocated bacterial effectors that inhibit host protein synthesis. Upon infection of macrophages with virulent L. pneumophila, these five effectors caused a global decrease in host translation, thereby preventing synthesis of IκB, an inhibitor of the NF-κB transcription factor. Thus, macrophages infected with wildtype L. pneumophila exhibited prolonged activation of NF-κB, which was associated with transcription of ETR target genes such as Il23a and Csf2. L. pneumophila mutants lacking the five effectors still activated TLRs and NF-κB, but because the mutants permitted normal IκB synthesis, NF-κB activation was more transient and was not sufficient to fully induce the ETR. L. pneumophila mutants expressing enzymatically inactive effectors were also unable to fully induce the ETR, whereas multiple compounds or bacterial toxins that inhibit host protein synthesis via distinct mechanisms recapitulated the ETR when administered with TLR ligands. Previous studies have demonstrated that the host response to bacterial infection is induced primarily by specific microbial molecules that activate TLRs or cytosolic pattern recognition receptors. Our results add to this model by providing a striking illustration of how the host immune response to a virulent pathogen can also be shaped by pathogen-encoded activities, such as inhibition of host protein synthesis.


Subject(s)
Bacterial Proteins/immunology , Legionella pneumophila/immunology , Legionella pneumophila/pathogenicity , Legionnaires' Disease/immunology , Protein Biosynthesis/immunology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Cells, Cultured , Host-Pathogen Interactions/physiology , I-kappa B Proteins/genetics , I-kappa B Proteins/immunology , I-kappa B Proteins/metabolism , Immunity, Innate/physiology , Legionella pneumophila/genetics , Legionella pneumophila/physiology , Legionnaires' Disease/genetics , Legionnaires' Disease/microbiology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Molecular Chaperones/metabolism , Mutation , NF-kappa B/genetics , NF-kappa B/immunology , NF-kappa B/metabolism , Protein Transport , Signal Transduction/immunology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism
9.
Development ; 136(16): 2849-60, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19633175

ABSTRACT

Wiskott-Aldrich Syndrome (WAS) family proteins are Arp2/3 activators that mediate the branched-actin network formation required for cytoskeletal remodeling, intracellular transport and cell locomotion. Wasp and Scar/WAVE, the two founding members of the family, are regulated by the GTPases Cdc42 and Rac, respectively. By contrast, linear actin nucleators, such as Spire and formins, are regulated by the GTPase Rho. We recently identified a third WAS family member, called Wash, with Arp2/3-mediated actin nucleation activity. We show that Drosophila Wash interacts genetically with Arp2/3, and also functions downstream of Rho1 with Spire and the formin Cappuccino to control actin and microtubule dynamics during Drosophila oogenesis. Wash bundles and crosslinks F-actin and microtubules, is regulated by Rho1, Spire and Arp2/3, and is essential for actin cytoskeleton organization in the egg chamber. Our results establish Wash and Rho as regulators of both linear- and branched-actin networks, and suggest an Arp2/3-mediated mechanism for how cells might coordinately regulate these structures.


Subject(s)
Actins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Wiskott-Aldrich Syndrome Protein/metabolism , rho GTP-Binding Proteins/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actins/genetics , Animals , Cytoskeleton/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Female , Mice , Mice, Inbred BALB C , Microfilament Proteins/genetics , Microtubules/metabolism , Oogenesis/physiology , Ovary/cytology , Ovary/metabolism , Vesicular Transport Proteins/genetics , Wiskott-Aldrich Syndrome Protein/genetics , rho GTP-Binding Proteins/genetics
10.
Nat Rev Gastroenterol Hepatol ; 19(5): 328-342, 2022 05.
Article in English | MEDLINE | ID: mdl-35190728

ABSTRACT

Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1-PRKACA) encoding a fusion protein (DNAJ-PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ-PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Adolescent , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Clinical Trials as Topic , HSP40 Heat-Shock Proteins , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Multicenter Studies as Topic , Young Adult
11.
Cancer Immunol Res ; 10(4): 403-419, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35181780

ABSTRACT

The tumor immune microenvironment (TIME) is commonly infiltrated by diverse collections of myeloid cells. Yet, the complexity of myeloid-cell identity and plasticity has challenged efforts to define bona fide populations and determine their connections to T-cell function and their relationship to patient outcome. Here, we have leveraged single-cell RNA-sequencing analysis of several mouse and human tumors and found that monocyte-macrophage diversity is characterized by a combination of conserved lineage states as well as transcriptional programs accessed along the differentiation trajectory. We also found in mouse models that tumor monocyte-to-macrophage progression was profoundly tied to regulatory T cell (Treg) abundance. In human kidney cancer, heterogeneity in macrophage accumulation and myeloid composition corresponded to variance in, not only Treg density, but also the quality of infiltrating CD8+ T cells. In this way, holistic analysis of monocyte-to-macrophage differentiation creates a framework for critically different immune states.


Subject(s)
Kidney Neoplasms , Monocytes , Animals , Macrophages , Mice , Phenotype , Tumor Microenvironment
12.
Genome Biol ; 22(1): 135, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33952321

ABSTRACT

Researchers must be able to generate experimentally testable hypotheses from sequencing-based observational microbiome experiments to discover the mechanisms underlying the influence of gut microbes on human health. We describe geneshot, a novel bioinformatics tool for identifying testable hypotheses based on gene-level metagenomic analysis of WGS microbiome data. By applying geneshot to two independent previously published cohorts, we identify microbial genomic islands consistently associated with response to immune checkpoint inhibitor (ICI)-based cancer treatment in culturable type strains. The identified genomic islands are within operons involved in type II secretion, TonB-dependent transport, and bacteriophage growth.


Subject(s)
Genomic Islands/genetics , Immunotherapy , Metagenomics , Software , Humans , Immune Checkpoint Inhibitors/pharmacology , Microbiota/genetics , Treatment Outcome
13.
Front Immunol ; 11: 621254, 2020.
Article in English | MEDLINE | ID: mdl-33613552

ABSTRACT

Natural killer (NK) cells and dendritic cells (DCs) are crucial mediators of productive immune responses to infection and disease. NK cells and a subtype of DCs, the type 1 conventional DCs (cDC1s), are individually important for regulating immune responses to cancer in mice and humans. Recent work has found that NK cells and cDC1s engage in intercellular cross-talk integral to initiating and coordinating adaptive immunity to cancer. This NK cell-cDC1 axis has been linked to increased overall survival and responses to anti-PD-1 immunotherapy in metastatic melanoma patients. Here, we review recent findings on the role of NK cells and cDC1s in protective immune responses to cancer and immunotherapy, as well as current therapies targeting this NK cell-cDC1 axis. Further, we explore the concept that intercellular cross-talk between NK cells and cDC1s may be key for many of the positive prognostic associations seen with NK cells and DCs individually. It is clear that increasing our understanding of the NK cell-cDC1 innate immune cell axis will be critical for the generation of novel therapies that can modulate anti-cancer immunity and increase patient responses to common immunotherapies.


Subject(s)
Cell Communication/immunology , Dendritic Cells/immunology , Immunotherapy , Killer Cells, Natural/immunology , Neoplasms , Signal Transduction/immunology , Animals , Humans , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
14.
Nat Med ; 24(8): 1178-1191, 2018 08.
Article in English | MEDLINE | ID: mdl-29942093

ABSTRACT

Intratumoral stimulatory dendritic cells (SDCs) play an important role in stimulating cytotoxic T cells and driving immune responses against cancer. Understanding the mechanisms that regulate their abundance in the tumor microenvironment (TME) could unveil new therapeutic opportunities. We find that in human melanoma, SDC abundance is associated with intratumoral expression of the gene encoding the cytokine FLT3LG. FLT3LG is predominantly produced by lymphocytes, notably natural killer (NK) cells in mouse and human tumors. NK cells stably form conjugates with SDCs in the mouse TME, and genetic and cellular ablation of NK cells in mice demonstrates their importance in positively regulating SDC abundance in tumor through production of FLT3L. Although anti-PD-1 'checkpoint' immunotherapy for cancer largely targets T cells, we find that NK cell frequency correlates with protective SDCs in human cancers, with patient responsiveness to anti-PD-1 immunotherapy, and with increased overall survival. Our studies reveal that innate immune SDCs and NK cells cluster together as an excellent prognostic tool for T cell-directed immunotherapy and that these innate cells are necessary for enhanced T cell tumor responses, suggesting this axis as a target for new therapies.


Subject(s)
Dendritic Cells/immunology , Immunotherapy , Killer Cells, Natural/immunology , Tumor Microenvironment/immunology , Antigens, Surface/metabolism , Cell Communication , Cell Survival , Humans , Lymphocytes/metabolism , Melanoma/immunology , Melanoma/pathology , Membrane Proteins/metabolism , Survival Analysis , Thrombomodulin
15.
Elife ; 62017 04 06.
Article in English | MEDLINE | ID: mdl-28383283

ABSTRACT

The inducible innate immune response to infection requires a concerted process of gene expression that is regulated at multiple levels. Most global analyses of the innate immune response have focused on transcription induced by defined immunostimulatory ligands, such as lipopolysaccharide. However, the response to pathogens involves additional complexity, as pathogens interfere with virtually every step of gene expression. How cells respond to pathogen-mediated disruption of gene expression to nevertheless initiate protective responses remains unclear. We previously discovered that a pathogen-mediated blockade of host protein synthesis provokes the production of specific pro-inflammatory cytokines. It remains unclear how these cytokines are produced despite the global pathogen-induced block of translation. We addressed this question by using parallel RNAseq and ribosome profiling to characterize the response of macrophages to infection with the intracellular bacterial pathogen Legionella pneumophila. Our results reveal that mRNA superinduction is required for the inducible immune response to a bacterial pathogen.


Subject(s)
Gene Expression Profiling , Immunity, Innate , Legionella pneumophila/immunology , Macrophages/immunology , RNA, Messenger/biosynthesis , Animals , Cells, Cultured , Mice, Inbred C57BL , RNA, Messenger/analysis
16.
Cell Rep ; 21(8): 2031-2038, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29166595

ABSTRACT

All pathogens must acquire nutrients from their hosts. The intracellular bacterial pathogen Legionella pneumophila, the etiological agent of Legionnaires' disease, requires host amino acids for growth within cells. The mechanistic target of rapamycin complex 1 (mTORC1) is an evolutionarily conserved master regulator of host amino acid metabolism. Here, we identify two families of translocated L. pneumophila effector proteins that exhibit opposing effects on mTORC1 activity. The Legionella glucosyltransferase (Lgt) effector family activates mTORC1, through inhibition of host translation, whereas the SidE/SdeABC (SidE) effector family acts as mTORC1 inhibitors. We demonstrate that a common activity of both effector families is to inhibit host translation. We propose that the Lgt and SidE families of effectors work in concert to liberate host amino acids for consumption by L. pneumophila.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions/physiology , Legionella pneumophila/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Carrier Proteins/metabolism , Legionnaires' Disease/metabolism , Membrane Proteins/metabolism , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL