Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Lipid Res ; 64(12): 100469, 2023 12.
Article in English | MEDLINE | ID: mdl-37922990

ABSTRACT

Deletion of the nuclear hormone receptor small heterodimer partner (Shp) ameliorates the development of obesity and nonalcoholic steatohepatitis (NASH) in mice. Liver-specific SHP plays a significant role in this amelioration. The gut microbiota has been associated with these metabolic disorders, and the interplay between bile acids (BAs) and gut microbiota contributes to various metabolic disorders. Since hepatic SHP is recognized as a critical regulator in BA synthesis, we assessed the involvement of gut microbiota in the antiobesity and anti-NASH phenotype of Shp-/- mice. Shp deletion significantly altered the levels of a few conjugated BAs. Sequencing the 16S rRNA gene in fecal samples collected from separately housed mice revealed apparent dysbiosis in Shp-/- mice. Cohousing Shp-/- mice with WT mice during a Western diet regimen impaired their metabolic improvement and effectively disrupted their distinctive microbiome structure, which became indistinguishable from that of WT mice. While the Western diet challenge significantly increased lipopolysaccharide and phenylacetic acid (PAA) levels in the blood of WT mice, their levels were not increased in Shp-/- mice. PAA was strongly associated with hepatic peroxisome proliferator-activated receptor gamma isoform 2 (Pparg2) activation in mice, which may represent the basis of the molecular mechanism underlying the association of gut bacteria and hepatic steatosis. Shp deletion reshapes the gut microbiota possibly by altering BAs. While lipopolysaccharide and PAA are the major driving forces derived from gut microbiota for NASH development, Shp deletion decreases these signaling molecules via dysbiosis, thereby partially protecting mice from diet-induced metabolic disorders.


Subject(s)
Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Bile Acids and Salts/metabolism , Dysbiosis/genetics , Dysbiosis/metabolism , Lipopolysaccharides/metabolism , Liver/metabolism , Metabolic Diseases/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , RNA, Ribosomal, 16S/metabolism
2.
J Am Chem Soc ; 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34133169

ABSTRACT

Over 80% of all chronic bacterial infections in humans are associated with biofilms, which are surface-associated bacterial communities encased within a secreted exopolysaccharide matrix that can provide resistance to environmental and chemical insults. Biofilm formation triggers broad adaptive changes in the bacteria, allowing them to be almost 1000-fold more resistant to conventional antibiotic treatments and host immune responses. The failure of antibiotics to eliminate biofilms leads to persistent chronic infections and can promote the development of antibiotic-resistant strains. Therefore, there is an urgent need to develop agents that effectively prevent biofilm formation and eradicate established biofilms. Herein, we present water-soluble synthetic peptidomimetic polyurethanes that can disrupt surface established biofilms of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, all of which show tolerance to the conventional antibiotics polymyxin B and ciprofloxacin. Furthermore, while these polyurethanes show poor antimicrobial activity against planktonic bacteria, they prevent surface attachment and stimulate bacterial surface motility to inhibit biofilm formation of both Gram-positive and Gram-negative bacteria at subinhibitory concentrations, without being toxic to mammalian cells. Our results show that these polyurethanes show promise as a platform for the development of therapeutics that target biofilms and modulate surface interactions of bacteria for the treatment of chronic biofilm-associated infections and as antibiofilm agents.

3.
Biomacromolecules ; 22(7): 2910-2920, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34085824

ABSTRACT

Antibiotic-resistant Gram-negative bacteria are emergent pathogens, causing millions of infections worldwide. While there are several classes of antibiotics that are effective against Gram-positive bacteria, the outer membrane (OM) of Gram-negative bacteria excludes high-molecular-weight hydrophobic antibiotics, making these species intrinsically resistant to several classes of antibiotics, including polyketides, aminocoumarins, and macrolides. The overuse of antibiotics such as ß-lactams has also promoted the spread of resistance genes throughout Gram-negative bacteria, including the production of extended spectrum ß-lactamases (ESBLs). The combination of innate and acquired resistance makes it extremely challenging to identify antibiotics that are effective against Gram-negative bacteria. In this study, we have demonstrated the synergistic effect of outer membrane-permeable cationic polyurethanes with rifampicin, a polyketide that would otherwise be excluded by the OM, on different strains of E. coli, including a clinically isolated uropathogenic multidrug-resistant (MDR) E. coli. Rifampicin combined with a low-dose treatment of a cationic polyurethane reduced the MIC in E. coli of rifampicin by up to 64-fold. The compositions of cationic polyurethanes were designed to have low hemolysis and low cell cytotoxicity while maintaining high antibacterial activity. Our results demonstrate the potential to rescue the large number of available OM-excluded antibiotics to target normally resistant Gram-negative bacteria via synergistic action with these cationic polyurethanes, acting as a novel antibiotic adjuvant class.


Subject(s)
Escherichia coli , Rifampin , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Microbial Sensitivity Tests , Polyurethanes , Rifampin/pharmacology
4.
Biochemistry ; 59(37): 3508-3516, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32844640

ABSTRACT

The bacterium Caulobacter crescentus is known to attach irreversibly to underwater surfaces by utilizing an adhesive structure called the holdfast, which exhibits the greatest known adhesive strength of any organism. The very small size of the holdfast (∼400 nm wide and ∼40 nm high) has made direct chemical analysis difficult, and its structure remains poorly understood. In this study, we employ spectroscopic techniques, including attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy, to probe holdfast chemistry. The data indicate the presence of a peptide signal within the holdfast polymer. By comparing the ATR-IR spectrum of the holdfast to peptidoglycan spectra from other bacterial species, we demonstrate the similarity of the holdfast chemistry to that of peptidoglycan, suggesting peptide cross-linking may play a role in holdfast architecture. To probe the molecular groups at the interface, surface-sensitive sum frequency generation spectroscopy was used to show that aromatic and hydroxyl groups related to this protein content at the adhesive interface could be playing a crucial role in adhesion. On the basis of these results, we propose a model of the holdfast architecture with similarities to the peptide cross-linking observed in the peptidoglycan polymer of the bacterial cell wall. These results not only provide information about the development of adhesives that could be based on holdfast chemical architecture but also reveal a potentially yet unexplored biosynthetic pathway in holdfast synthesis that has not yet been revealed by genetic approaches, thereby opening up a potentially new avenue of research in holdfast synthesis.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion , Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Caulobacter crescentus/physiology , Peptide Fragments/chemistry , Peptidoglycan/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cross-Linking Reagents/chemistry , Spectrophotometry, Infrared
5.
Environ Microbiol ; 22(3): 952-963, 2020 03.
Article in English | MEDLINE | ID: mdl-31390129

ABSTRACT

Chlorophyll (Chl) f and d are the most recently discovered chlorophylls, enabling cyanobacteria to harvest near-infrared radiation (NIR) at 700-780 nm for oxygenic photosynthesis. Little is known about the occurrence of these pigments in terrestrial habitats. Here, we provide first details on spectral photon irradiance within the photic zones of four terrestrial cave systems in concert with a detailed investigation of photopigmentation, light reflectance and microbial community composition. We frequently found Chl f and d along the photic zones of caves characterized by low light enriched in NIR and inhabited by cyanobacteria producing NIR-absorbing pigments. Surprisingly, deeper parts of caves still contained NIR, an effect likely attributable to the reflectance of specific wavelengths by the surface materials of cave walls. We argue that the stratification of microbial communities across the photic zones of cave entrances resembles the light-driven species distributions in forests and aquatic environments.


Subject(s)
Caves/microbiology , Cyanobacteria/physiology , Ecosystem , Infrared Rays , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Cyanobacteria/radiation effects , Forests , Photosynthesis/physiology
6.
Biomacromolecules ; 20(4): 1675-1682, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30844254

ABSTRACT

Infections associated with antibiotic-resistant bacteria have become a threat to the global public health. Antimicrobial polymers, which are synthetic mimics of antimicrobial peptides, have gained increasing attention, as they may have a lower chance of inducing resistance. The cationic-hydrophobic balance and distribution of cationic and hydrophobic moieties of these polymers is known to have a major effect on antimicrobial activity. We studied the properties of a series of facially amphiphilic antimicrobial surfactant-like poly(ester urethane)s with different hydrophobic pendant groups (P1, P2, and P3) and cationic groups distributed uniformly along the polymer chain. These polymers exhibited bactericidal activity against Gram-negative Escherichia coli and Pseudomonas aeruginosa, as well as Gram-positive Staphylococcus aureus and Staphylococcus epidermidis. Microscopy and dye release assays demonstrated that these polymers cause membrane disruption, which is dependent on the cationic-hydrophobic ratio in the polymer. Membrane permeability assays revealed that these polymers can permeabilize the outer membrane of E. coli and damage the cytoplasmic membrane of both E. coli and S. aureus. In addition, our results indicate that the three polymers exhibit a different extent of membrane disruption against E. coli. P1 caused minor damage to the cytoplasmic membrane integrity, but it was able to dissipate the cytoplasmic membrane potential, leading to cell death. P2 and P3 depolarized the cytoplasmic membrane and also caused significant damage to the cytoplasmic membrane. Overall, we showed a new class of broad-spectrum bactericidal polymers whose membrane disrupting ability against E. coli correlates with the structural differences of the hydrophobic pendant groups.


Subject(s)
Anti-Bacterial Agents , Bacteria/growth & development , Biomimetic Materials , Cell Membrane/metabolism , Polyesters , Polyurethanes , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Membrane Potentials/drug effects , Polyesters/chemical synthesis , Polyesters/chemistry , Polyesters/pharmacology , Polyurethanes/chemical synthesis , Polyurethanes/chemistry , Polyurethanes/pharmacology
7.
Biomacromolecules ; 20(11): 4096-4106, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31573795

ABSTRACT

The rise in prevalence of antibiotic resistant strains of bacteria is a very significant challenge for treating life-threatening infections worldwide. A source of novel therapeutics that has shown great promise is a class of biomolecules known as antimicrobial peptides. Previously, within our laboratories, we developed a new family of water-soluble antimicrobial polyurethanes that mimic antimicrobial peptides. Within this current investigation, studies were carried out to gain a greater understanding of the structure/property relationships of the polyurethanes. This was achieved by synthesizing a variety of pendant group functionalized polyurethanes and testing their effectiveness as an antimicrobial by carrying out minimum inhibitory concentration testing and determining their compatibility with blood cells. Additionally, insight into the mode of action of the polyurethanes was obtained through experiments using dye encapsulated phospholipids and assays of bacterial cells that indicated the ability of the polyurethanes to penetrate and disrupt membranes. Collectively, the results indicate that the addition of hydrophobic, uncharged polar, and anionic moieties do not have a strong influence on the antimicrobial activity; yet, the addition of hydrophobic groups enhances cytoplasmic membrane disruption, a larger proportion of cationic pendant groups promotes greater outer membrane disruption of Gram negative bacteria, and uncharged polar groups and anionic groups improve compatibility of the polyurethanes with mammalian cells.


Subject(s)
Anti-Infective Agents/pharmacology , Biomimetic Materials/pharmacology , Cell Membrane/drug effects , Polyurethanes/pharmacology , Anti-Infective Agents/chemistry , Bacteria/drug effects , Bacteria/pathogenicity , Biomimetic Materials/chemistry , Humans , Polyurethanes/chemistry , Structure-Activity Relationship , alpha-Defensins/chemistry
8.
Chembiochem ; 19(4): 411-418, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29193598

ABSTRACT

A number of class I lyase-like enzymes, including aromatic ammonia-lyases and aromatic 2,3-aminomutases, contain the electrophilic 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) catalytic moiety. This study reveals that Pseudomonas fluorescens R124 strain isolated from a nutrient-limited cave encodes a histidine ammonia-lyase, a tyrosine/phenylalanine/histidine ammonia-lyase (XAL), and a phenylalanine 2,3-aminomutase (PAM), and demonstrates that an organism under nitrogen-limited conditions can develop novel nitrogen fixation and transformation pathways to enrich the possibility of nitrogen metabolism by gaining a PAM through horizontal gene transfer. The novel MIO enzymes are potential biocatalysts in the synthesis of enantiopure unnatural amino acids. The broad substrate acceptance and high thermal stability of PfXAL indicate that this enzyme is highly suitable for biocatalysis.


Subject(s)
Ammonia-Lyases/metabolism , Histidine Ammonia-Lyase/metabolism , Intramolecular Transferases/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Pseudomonas fluorescens/enzymology , Ammonia-Lyases/chemistry , Ammonia-Lyases/genetics , Biocatalysis , Histidine Ammonia-Lyase/chemistry , Histidine Ammonia-Lyase/genetics , Imidazoles/chemistry , Intramolecular Transferases/chemistry , Intramolecular Transferases/genetics , Molecular Structure , Phenylalanine Ammonia-Lyase/chemistry , Phenylalanine Ammonia-Lyase/genetics , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/isolation & purification
9.
Soft Matter ; 12(45): 9132-9141, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27812588

ABSTRACT

The adhesion of two materials in the presence of water is greatly impeded by a boundary layer of water between the adhesive and the adherend, resulting in adhesive failure of most synthetic adhesives; however, life evolved first in water and there are many aquatic organisms that have to overcome this impediment to underwater adhesion. For example, multicellular aquatic organisms like the mussel, sandcastle worm and the caddisfly larva employ well-studied adhesive mechanisms for sticking in the presence of water. Unicellular organisms such as bacteria also make use of various means for attaching to surfaces, within similar environmental conditions. Prominent among them is the aquatic bacteria, Caulobacter crescentus which utilizes a unique adhesive secretion, the holdfast, to adhere strongly in the presence of water. Here we review the attachment mechanisms of some multicellular aquatic organisms and compare the similarities and differences in the composition and structure of the C. crescentus holdfast, which holds promise as a potential source for bio-inspired synthetic underwater adhesives with prospective applications in medicine, engineering and biomimetics.


Subject(s)
Adhesives/chemistry , Bacterial Adhesion , Caulobacter crescentus/physiology , Polysaccharides, Bacterial/chemistry , Water , Animals , Insecta , Prospective Studies , Water Microbiology
10.
Antonie Van Leeuwenhoek ; 109(4): 529-42, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26825784

ABSTRACT

Helicobacter presence and viability in waters is not well characterized. The identification of natural reservoirs and infection sources may provide novel insights into its waterborne transmission. The goal of this study was to investigated the occurrence of Helicobacter spp. in natural freshwaters from Roraima Tepui, a little studied and unique ecosystem of the Guayana Shield. Freshwaters collected from two localities at Roraima Tepui were cultured in HP selective broth and agar for Helicobacter pylori and analysed by fluorescent in situ hybridization (FISH), specific PCR assays, 16S rRNA gene sequencing and phylogenetic analysis. The presence of other bacteria in freshwater enrichments was determined using clone library sequencing of the 16S rRNA gene and phylogenetic inferences. Helicobacter spp. were detected by semi-nested PCR and FISH in freshwater enrichments from both sites. Coccoid viable but nonculturable (VBNC) cells were evidenced using 16S rRNA gene Helicobacter species and H. pylori-specific probes. Partial 16S rRNA gene sequences of two HP enrichments showed high similarity to H. pylori and Helicobacter nemestrinae (99-100 %). Other bacteria such as Serratia, Aquitalea, Chromobacterium, Mycobacterium, Acinetobacter, Curvibacter and Dysgonomonas were also detected using complete 16S rRNA gene sequences, with Serratia, Aquitalea and Chromobacterium the most common genera (40.9, 18.2 and 15.2 %, respectively). This is the first time that Helicobacter spp. have been reported in freshwaters of a tepui ecosystem. Our results contribute to the current knowledge of these bacteria in the aquatic environment and expand their known/potential sites outside the human host.


Subject(s)
Fresh Water/microbiology , Helicobacter/classification , Helicobacter/isolation & purification , Base Sequence , DNA, Bacterial/genetics , Ecosystem , Helicobacter/genetics , Helicobacter Infections/microbiology , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , South America , Water Resources
11.
Antonie Van Leeuwenhoek ; 107(2): 519-31, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25491121

ABSTRACT

A novel actinobacterium, designated MM109(T), was isolated from a moonmilk deposit collected from the cave 'Grotte des Collemboles' located in Comblain-au-Pont, Belgium. Based on a polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological, and physiological characterization, the isolate has been affiliated to the genus Streptomyces. Multilocus sequence analysis based on the 16S rRNA gene and five other house-keeping genes (atpD, gyrB, rpoB, recA and trpB) showed that the MM109(T) isolate is sufficiently distinct from its closest relative, Streptomyces peucetius strain AS 4.1799(T), as to represent a novel species. The phylogenetic distinctiveness of the taxon represented by isolate MM109(T) was supported by the isolation and identification of additional twelve moonmilk-derived isolates, which according to multilocus sequence analysis were clustered along with MM109(T). Scanning electron microscopy observations revealed complex and diversified structures within a MM109(T) colony, made from branching vegetative mycelia. The spore chains of the MM109(T) isolate undergo complete septation at the late stages of the morphological differentiation process, leading to the formation of packs of smooth cylindrical-shaped spores. Isolate MM109(T) produces several intracellular and diffusible pigments, particularly an intracellular green-pigmented secondary metabolite, which was identified through UPLC-ESI-MS analysis as ferroverdin A, an iron-chelating molecule formerly extracted and characterized from Streptomyces sp. strain WK-5344. The isolate MM109(T) is thus considered to represent a novel species of Streptomyces, for which the name Streptomyces lunaelactis sp. nov. is proposed with the type strain MM109(T) (=DSM 42149(T) = BCCM/LMG 28326(T)).


Subject(s)
Environmental Microbiology , Ferrous Compounds/metabolism , Nitroso Compounds/metabolism , Streptomyces/classification , Streptomyces/metabolism , Bacterial Proteins/genetics , Bacterial Typing Techniques , Belgium , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Microscopy, Electron, Scanning , Molecular Sequence Data , Phylogeny , Pigments, Biological/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptomyces/genetics , Streptomyces/isolation & purification
12.
ACS Appl Mater Interfaces ; 16(5): 5513-5521, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38261734

ABSTRACT

The creation of 3D biomimetic composite structures has important applications in tissue engineering, lightweight structures, drug delivery, and sensing. Previous approaches in fabricating 3D biomimetic composites have relied on blending or assembling chemically synthesized molecules or structures, making it challenging to achieve precise control of the size, geometry, and internal structure of the biomimetic composites. Here, we present a new approach for the creation of 3D bone-mimetic biocomposites with precisely controlled shape, hierarchical structure, and functionalities. Our approach is based on the integration of programmable microbial biosynthesis with 3D printing of gas-permeable and customizable bioreactors. The organic and inorganic components are bacterial cellulose and calcium hydroxyapatite via a mineral precursor, which are generated by Komagataeibacter xylinus and Bacillus simplex P6A, respectively, in 3D-printed silicone bioreactors in consecutive culturing cycles. This study is of high significance to biocomposites, biofabrication, and tissue engineering as it paves the way for the synergistic integration of microbial biosynthesis and additive manufacturing.


Subject(s)
Biomimetics , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering , Durapatite/chemistry , Printing, Three-Dimensional
13.
ACS Appl Bio Mater ; 7(5): 3247-3257, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38648508

ABSTRACT

Engineered living structures with the incorporation of functional bacteria have been explored extensively in recent years and have shown promising potential applications in biosensing, environmental remediation, and biomedicine. However, it is still rare and challenging to achieve multifunctional capabilities such as material production, shape transformation, and sensing in a single-engineered living structure. In this study, we demonstrate bifunctional living structures by synergistically integrating cellulose-generating bacteria with pH-responsive hydrogels, and the entire structures can be precisely fabricated by three-dimensional (3D) printing. Such 3D-printed bifunctional living structures produce cellulose nanofibers in ambient conditions and have reversible and controlled shape-morphing properties (usually referred to as four-dimensional printing). Those functionalities make them biomimetic versions of silkworms in the sense that both can generate nanofibers and have body motion. We systematically investigate the processing-structure-property relationship of the bifunctional living structures. The on-demand separation of 3D cellulose structures from the hydrogel template and the living nature of the bacteria after processing and shape transformation are also demonstrated.


Subject(s)
Biocompatible Materials , Cellulose , Hydrogels , Materials Testing , Printing, Three-Dimensional , Cellulose/chemistry , Hydrogels/chemistry , Biocompatible Materials/chemistry , Particle Size , Nanofibers/chemistry , Hydrogen-Ion Concentration , Animals
14.
Biomater Sci ; 12(13): 3458-3470, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38836321

ABSTRACT

Current treatment strategies for infection of chronic wounds often result in compromised healing and necrosis due to antibiotic toxicity, and underlying biomarkers affected by treatments are not fully known. Here, a multifunctional dressing was developed leveraging the unique wound-healing properties of chitosan, a natural polysaccharide known for its numerous benefits in wound care. The dressing consists of an oxygenating perfluorocarbon functionalized methacrylic chitosan (MACF) hydrogel incorporated with antibacterial polyhexamethylene biguanide (PHMB). A non-healing diabetic infected wound model with emerging metabolomics tools was used to explore the anti-infective and wound healing properties of the resultant multifunctional dressing. Direct bacterial bioburden assessment demonstrated superior antibacterial properties of hydrogels over a commercial dressing. However, wound tissue quality analyses confirmed that sustained PHMB for 21 days resulted in tissue necrosis and disturbed healing. Therefore, a follow-up comparative study investigated the best treatment course for antiseptic application ranging from 7 to 21 days, followed by the oxygenating chitosan-based MACF treatment for the remainder of the 21 days. Bacterial counts, tissue assessments, and lipidomics studies showed that 14 days of application of MACF-PHMB dressings followed by 7 days of MACF dressings provides a promising treatment for managing infected non-healing diabetic skin ulcers.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Hydrogels , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/administration & dosage , Wound Healing/drug effects , Animals , Biguanides/chemistry , Biguanides/pharmacology , Biguanides/administration & dosage , Wound Infection/drug therapy , Wound Infection/microbiology , Male , Oxygen/chemistry , Chronic Disease , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Fluorocarbons/administration & dosage
15.
J Bacteriol ; 195(21): 4793-803, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23995634

ABSTRACT

Microbial adaptation to environmental conditions is a complex process, including acquisition of positive traits through horizontal gene transfer or the modification of existing genes through duplication and/or mutation. In this study, we examined the adaptation of a Pseudomonas fluorescens isolate (R124) from the nutrient-limited mineral environment of a silica cave in comparison with P. fluorescens isolates from surface soil and the rhizosphere. Examination of metal homeostasis gene pathways demonstrated a high degree of conservation, suggesting that such systems remain functionally similar across chemical environments. The examination of genomic islands unique to our strain revealed the presence of genes involved in carbohydrate metabolism, aromatic carbon metabolism, and carbon turnover, confirmed through phenotypic assays, suggesting the acquisition of potentially novel mechanisms for energy metabolism in this strain. We also identified a twitching motility phenotype active at low-nutrient concentrations that may allow alternative exploratory mechanisms for this organism in a geochemical environment. Two sets of candidate twitching motility genes are present within the genome, one on the chromosome and one on a plasmid; however, a plasmid knockout identified the functional gene as being present on the chromosome. This work highlights the plasticity of the Pseudomonas genome, allowing the acquisition of novel nutrient-scavenging pathways across diverse geochemical environments while maintaining a core of functional stress response genes.


Subject(s)
Adaptation, Physiological , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , Minerals/metabolism , Pseudomonas fluorescens/metabolism , Bacteriological Techniques , Caves , Ecosystem , Gene Transfer, Horizontal , Metals/metabolism , Nitrogen/metabolism , Phylogeny , Pseudomonas fluorescens/genetics , Silicon Dioxide
16.
Sci Rep ; 12(1): 17062, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36224210

ABSTRACT

Most cave formation requires mass separation from a host rock in a process that operates outward from permeable pathways to create the cave void. Given the poor solubility of Fe(III) phases, such processes are insufficient to account for the significant iron formation caves (IFCs) seen in Brazilian banded iron formations (BIF) and associated rock. In this study we demonstrate that microbially-mediated reductive Fe(III) dissolution is solubilizing the poorly soluble Fe(III) phases to soluble Fe(II) in the anoxic zone behind cave walls. The resultant Fe(III)-depleted material (termed sub muros) is unable to maintain the structural integrity of the walls and repeated rounds of wall collapse lead to formation of the cave void in an active, measurable process. This mechanism may move significant quantities of Fe(II) into ground water and may help to explain the mechanism of BIF dissolution and REE enrichment in the generation of canga. The role of Fe(III) reducing microorganism and mass separation behind the walls (outward-in, rather than inward-out) is not only a novel mechanism of speleogenesis, but it also may identify a previously overlooked source of continental Fe that may have contributed to Archaean BIF formation.


Subject(s)
Caves , Ferric Compounds , Ferric Compounds/chemistry , Ferrous Compounds/metabolism , Iron/metabolism , Oxidation-Reduction
17.
Front Microbiol ; 12: 696534, 2021.
Article in English | MEDLINE | ID: mdl-34335526

ABSTRACT

Previous work demonstrated that microbial Fe(III)-reduction contributes to void formation, and potentially cave formation within Fe(III)-rich rocks, such as banded iron formation (BIF), iron ore and canga (a surficial duricrust), based on field observations and static batch cultures. Microbiological Fe(III) reduction is often limited when biogenic Fe(II) passivates further Fe(III) reduction, although subsurface groundwater flow and the export of biogenic Fe(II) could alleviate this passivation process, and thus accelerate cave formation. Given that static batch cultures are unlikely to reflect the dynamics of groundwater flow conditions in situ, we carried out comparative batch and column experiments to extend our understanding of the mass transport of iron and other solutes under flow conditions, and its effect on community structure dynamics and Fe(III)-reduction. A solution with chemistry approximating cave-associated porewater was amended with 5.0 mM lactate as a carbon source and added to columns packed with canga and inoculated with an assemblage of microorganisms associated with the interior of cave walls. Under anaerobic conditions, microbial Fe(III) reduction was enhanced in flow-through column incubations, compared to static batch incubations. During incubation, the microbial community profile in both batch culture and columns shifted from a Proteobacterial dominance to the Firmicutes, including Clostridiaceae, Peptococcaceae, and Veillonellaceae, the latter of which has not previously been shown to reduce Fe(III). The bacterial Fe(III) reduction altered the advective properties of canga-packed columns and enhanced permeability. Our results demonstrate that removing inhibitory Fe(II) via mimicking hydrologic flow of groundwater increases reduction rates and overall Fe-oxide dissolution, which in turn alters the hydrology of the Fe(III)-rich rocks. Our results also suggest that reductive weathering of Fe(III)-rich rocks such as canga, BIF, and iron ores may be more substantial than previously understood.

18.
BMC Res Notes ; 14(1): 175, 2021 May 08.
Article in English | MEDLINE | ID: mdl-33964980

ABSTRACT

OBJECTIVES: To characterize the bacterial community of Wind Cave's Madison aquifer through whole-genome sequencing, and to better understand the bacterial ecology by identifying genes involved in acyl-homoserine lactone (AHL) based quorum-sensing (QS) systems. RESULTS: Genome-based taxonomic classification revealed the microbial richness present in the pristine Madison aquifer. The strains were found to span eleven genera and fourteen species, of which eight had uncertain taxonomic classifications. The genomes of strains SD129 and SD340 were found to contain the archetypical AHL QS system composed of two genes, luxI and luxR. Surprisingly, the genomes of strains SD115, SD129, SD274 and SD316 were found to contain one to three luxR orphans (solos). Strain SD129, besides possessing an archetypical AHL QS luxI-luxR pair, also contained two luxR solos, while strain SD316 contained three LuxR solos and no luxI-luxR pairs. The ligand-binding domain of two LuxR solos, one each from strains SD129 and SD316, were found to contain novel substitutions not previously reported, thus may represent two LuxR orphans that detection and response to unknown self-produced signal(s), or to signal(s) produced by other organisms.


Subject(s)
Groundwater , Trans-Activators , Bacteria/genetics , Bacterial Proteins/genetics , Genomics , Repressor Proteins
19.
J Environ Qual ; 39(2): 509-18, 2010.
Article in English | MEDLINE | ID: mdl-20176824

ABSTRACT

In the absence of sunlight energy, microbial community survival in subterranean aquifers depends on integrated mechanisms of energy and nutrient scavenging. Because karst aquifers are particularly sensitive to agricultural land use impacts due to rapid and direct hydrologic connections for pollutants to enter the groundwater, we examined the fate of an exogenous pesticide (atrazine) into such an aquifer and its impact on microbial ecosystem function. Atrazine and its degradation product deethylatrazine (DEA) were detected in a fast-flowing karst aquifer underlying atrazine-impacted agricultural land. By establishing microbial cultures with sediments from a cave conduit within this aquifer, we observed two distinct pathways of microbial atrazine degradation: (i) in cave sediments previously affected by atrazine, apparent surface-derived catabolic genes allowed the microbial communities to rapidly degrade atrazine via hydroxyatrazine, to cyanuric acid, and (ii) in low-impact sediments not previously exposed to this pesticide, atrazine was also degraded by microbial activity at a much slower rate, with DEA as the primary degradation product. In sediments from both locations, atrazine affected nitrogen cycling by altering the abundance of nitrogen dissimulatory species able to use nitrogenous compounds for energy. The sum of these effects was that the presence of atrazine altered the natural microbial processes in these cave sediments, leading to an accumulation of nitrate. Such changes in microbial ecosystem dynamics can alter the ability of DEA to serve as a proxy for atrazine contamination and can negatively affect ecosystem health and water quality in karst aquifers.


Subject(s)
Atrazine/metabolism , Ecosystem , Water Microbiology , Water Pollutants, Chemical/metabolism , Xenobiotics/metabolism , Energy Metabolism , Geological Phenomena , Iowa , Minnesota , Water Supply
20.
Access Microbiol ; 2(2): acmi000089, 2020.
Article in English | MEDLINE | ID: mdl-34568753

ABSTRACT

Acinetobacter are Gram-negative bacteria belonging to the sub-phyla Gammaproteobacteria, commonly associated with soils, animal feeds and water. Some members of the Acinetobacter have been implicated in hospital-acquired infections, with broad-spectrum antibiotic resistance. Here we report the whole-genome sequence of LC510, an Acinetobacter species isolated from deep within a pristine location of the Lechuguilla Cave. Pairwise nucleotide comparison to three type strains within the genus Acinetobacter assigned LC510 as an Acinetobacter pittii isolate. Scanning of the LC510 genome identified two genes coding for b-lactamase resistance, despite the fact that LC510 was isolated from a portion of the cave not previously visited by humans and protected from anthropogenic input. The ability to produce acyl-homoserine lactone (AHL) signal in culture medium, an observation that is consistent with the identification of the luxI and luxR homologues in its genome, suggests that cell-to-cell communication remains important in an isolated cave ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL