Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Acta Neuropathol ; 147(1): 29, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38308693

ABSTRACT

The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.


Subject(s)
Alzheimer Disease , Dementia , TDP-43 Proteinopathies , Humans , Brain/pathology , TDP-43 Proteinopathies/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Aging/genetics , Aging/pathology , DNA-Binding Proteins/metabolism , Exons
2.
EMBO Rep ; 23(8): e54234, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35735139

ABSTRACT

Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA, Antisense/genetics , Drosophila melanogaster , Gain of Function Mutation , Humans , Kinesins/genetics , Motor Neurons/metabolism , Mutation , Transcription Factor 7-Like 2 Protein/metabolism
3.
Neurobiol Dis ; 182: 106136, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37120096

ABSTRACT

Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Animals , Mice , MEF2 Transcription Factors/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Phosphorylation/genetics , Synapses/metabolism , Fragile X Syndrome/genetics , Mice, Knockout
4.
Traffic ; 21(7): 454-462, 2020 07.
Article in English | MEDLINE | ID: mdl-32374065

ABSTRACT

RNA granule formation, which can be regulated by RNA-binding proteins (RBPs) such as fragile X mental retardation protein (FMRP), acts as a mechanism to control both the repression and subcellular localization of translation. Dysregulated assembly of RNA granules has been implicated in multiple neurological disorders, such as amyotrophic lateral sclerosis. Thus, it is crucial to understand the cellular pathways impinging upon granule assembly or disassembly. The goal of this review is to summarize recent advances in our understanding of the role of the RBP, FMRP, in translational repression underlying RNA granule dynamics, mRNA transport and localized. We summarize the known mechanisms of translational regulation by FMRP, the role of FMRP in RNA transport granules, fragile X granules and stress granules. Focusing on the emerging link between FMRP and stress granules, we propose a model for how hyperassembly and hypoassembly of RNA granules may contribute to neurological diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Fragile X Mental Retardation Protein , Amyotrophic Lateral Sclerosis/genetics , Cytoplasmic Granules , Fragile X Mental Retardation Protein/genetics , Humans , RNA
5.
J Biol Chem ; 296: 100760, 2021.
Article in English | MEDLINE | ID: mdl-33965374

ABSTRACT

One of the defining pathological features of Alzheimer's disease (AD) is the deposition of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau in the brain. Aberrant activation of kinases in AD has been suggested to enhance phosphorylation and toxicity of tau, making the responsible tau kinases attractive therapeutic targets. The full complement of tau-interacting kinases in AD brain and their activity in disease remains incompletely defined. Here, immunoaffinity enrichment coupled with mass spectrometry (MS) identified TANK-binding kinase 1 (TBK1) as a tau-interacting partner in human AD cortical brain tissues. We validated this interaction in human AD, familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) caused by mutations in MAPT (R406W & P301L) and corticobasal degeneration (CBD) postmortem brain tissues as well as human cell lines. Further, we document increased TBK1 activation in both AD and FTDP-17 and map TBK1 phosphorylation sites on tau based on in vitro kinase assays coupled to MS. Lastly, in a Drosophila tauopathy model, activating expression of a conserved TBK1 ortholog triggers tau hyperphosphorylation and enhanced neurodegeneration, whereas knockdown had the reciprocal effect, suppressing tau toxicity. Collectively, our findings suggest that increased TBK1 activation may promote tau hyperphosphorylation and neuronal loss in AD and related tauopathies.


Subject(s)
Alzheimer Disease/metabolism , Protein Interaction Maps , Protein Serine-Threonine Kinases/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Drosophila , Female , HEK293 Cells , Humans , Male , Tauopathies/pathology
6.
Nat Chem Biol ; 16(2): 188-196, 2020 02.
Article in English | MEDLINE | ID: mdl-31959964

ABSTRACT

Allosteric modulators of ion channels typically alter the transitions rates between conformational states without changing the properties of the open pore. Here we describe a new class of positive allosteric modulators of N-methyl D-aspartate receptors (NMDARs) that mediate a calcium-permeable component of glutamatergic synaptic transmission and play essential roles in learning, memory and cognition, as well as neurological disease. EU1622-14 increases agonist potency and channel-open probability, slows receptor deactivation and decreases both single-channel conductance and calcium permeability. The unique functional selectivity of this chemical probe reveals a mechanism for enhancing NMDAR function while limiting excess calcium influx, and shows that allosteric modulators can act as biased modulators of ion-channel permeation.


Subject(s)
Pyrrolidines/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation/drug effects , Animals , Calcium/metabolism , Cells, Cultured , Female , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Glycine/metabolism , Glycine/pharmacology , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Ion Channel Gating/drug effects , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Oocytes/drug effects , Oocytes/physiology , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus laevis
7.
Mol Psychiatry ; 26(3): 772-783, 2021 03.
Article in English | MEDLINE | ID: mdl-30976085

ABSTRACT

The 3q29 deletion confers increased risk for neuropsychiatric phenotypes including intellectual disability, autism spectrum disorder, generalized anxiety disorder, and a >40-fold increased risk for schizophrenia. To investigate consequences of the 3q29 deletion in an experimental system, we used CRISPR/Cas9 technology to introduce a heterozygous deletion into the syntenic interval on C57BL/6 mouse chromosome 16. mRNA abundance for 20 of the 21 genes in the interval was reduced by ~50%, while protein levels were reduced for only a subset of these, suggesting a compensatory mechanism. Mice harboring the deletion manifested behavioral impairments in multiple domains including social interaction, cognitive function, acoustic startle, and amphetamine sensitivity, with some sex-dependent manifestations. In addition, 3q29 deletion mice showed reduced body weight throughout development consistent with the phenotype of 3q29 deletion syndrome patients. Of the genes within the interval, DLG1 has been hypothesized as a contributor to the neuropsychiatric phenotypes. However, we show that Dlg1+/- mice did not exhibit the behavioral deficits seen in mice harboring the full 3q29 deletion. These data demonstrate the following: the 3q29 deletion mice are a valuable experimental system that can be used to interrogate the biology of 3q29 deletion syndrome; behavioral manifestations of the 3q29 deletion may have sex-dependent effects; and mouse-specific behavior phenotypes associated with the 3q29 deletion are not solely due to haploinsufficiency of Dlg1.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Schizophrenia , Animals , Child , Chromosome Deletion , Clustered Regularly Interspaced Short Palindromic Repeats , Developmental Disabilities/genetics , Disease Models, Animal , Humans , Intellectual Disability/genetics , Mice , Mice, Inbred C57BL , Phenotype , Schizophrenia/genetics
8.
Int J Mol Sci ; 23(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35682993

ABSTRACT

Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.


Subject(s)
Fragile X Syndrome , Nervous System Physiological Phenomena , Animals , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Humans , Mice , Mice, Inbred C57BL , Protein Biosynthesis
9.
Neurobiol Dis ; 149: 105228, 2021 02.
Article in English | MEDLINE | ID: mdl-33359139

ABSTRACT

Disruption in copper homeostasis causes a number of cognitive and motor deficits. Wilson's disease and Menkes disease are neurodevelopmental disorders resulting from mutations in the copper transporters ATP7A and ATP7B, with ATP7A mutations also causing occipital horn syndrome, and distal motor neuropathy. A 65 year old male presenting with brachial amyotrophic diplegia and diagnosed with amyotrophic lateral sclerosis (ALS) was found to harbor a p.Met1311Val (M1311V) substitution variant in ATP7A. ALS is a fatal neurodegenerative disease associated with progressive muscle weakness, synaptic deficits and degeneration of upper and lower motor neurons. To investigate the potential contribution of the ATP7AM1311V variant to neurodegeneration, we obtained and characterized both patient-derived fibroblasts and patient-derived induced pluripotent stem cells differentiated into motor neurons (iPSC-MNs), and compared them to control cell lines. We found reduced localization of ATP7AM1311V to the trans-Golgi network (TGN) at basal copper levels in patient-derived fibroblasts and iPSC-MNs. In addition, redistribution of ATP7AM1311V out of the TGN in response to increased extracellular copper was defective in patient fibroblasts. This manifested in enhanced intracellular copper accumulation and reduced survival of ATP7AM1311V fibroblasts. iPSC-MNs harboring the ATP7AM1311V variant showed decreased dendritic complexity, aberrant spontaneous firing, and decreased survival. Finally, expression of the ATP7AM1311V variant in Drosophila motor neurons resulted in motor deficits. Apilimod, a drug that targets vesicular transport and recently shown to enhance survival of C9orf72-ALS/FTD iPSC-MNs, also increased survival of ATP7AM1311V iPSC-MNs and reduced motor deficits in Drosophila expressing ATP7AM1311V. Taken together, these observations suggest that ATP7AM1311V negatively impacts its role as a copper transporter and impairs several aspects of motor neuron function and morphology.


Subject(s)
Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Copper/metabolism , Genetic Variation/physiology , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Animals , Animals, Genetically Modified , Animals, Newborn , Cells, Cultured , Copper/pharmacology , Copper/therapeutic use , Dose-Response Relationship, Drug , Drosophila , Genetic Variation/drug effects , HeLa Cells , Homeostasis/drug effects , Homeostasis/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mice , Motor Neuron Disease/drug therapy , Protein Transport/drug effects , Protein Transport/physiology
10.
J Neurosci ; 39(23): 4595-4605, 2019 06 05.
Article in English | MEDLINE | ID: mdl-30940719

ABSTRACT

An essential aspect of goal-directed decision-making is selecting actions based on anticipated consequences, a process that involves the orbitofrontal cortex (OFC) and potentially, the plasticity of dendritic spines in this region. To investigate this possibility, we trained male and female mice to nose poke for food reinforcers, or we delivered the same number of food reinforcers non-contingently to separate mice. We then decreased the likelihood of reinforcement for trained mice, requiring them to modify action-outcome expectations. In a separate experiment, we blocked action-outcome updating via chemogenetic inactivation of the OFC. In both cases, successfully selecting actions based on their likely consequences was associated with fewer immature, thin-shaped dendritic spines and a greater proportion of mature, mushroom-shaped spines in the ventrolateral OFC. This pattern was distinct from spine loss associated with aging, and we identified no effects on hippocampal CA1 neurons. Given that the OFC is involved in prospective calculations of likely outcomes, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for solidifying durable expectations. To investigate causal relationships, we inhibited the RNA-binding protein fragile X mental retardation protein (encoded by Fmr1), which constrains dendritic spine turnover. Ventrolateral OFC-selective Fmr1 knockdown recapitulated the behavioral effects of inducible OFC inactivation (and lesions; also shown here), impairing action-outcome conditioning, and caused dendritic spine excess. Our findings suggest that a proper balance of dendritic spine plasticity within the OFC is necessary for one's ability to select actions based on anticipated consequences.SIGNIFICANCE STATEMENT Navigating a changing environment requires associating actions with their likely outcomes and updating these associations when they change. Dendritic spine plasticity is likely involved, yet relationships are unconfirmed. Using behavioral, chemogenetic, and viral-mediated gene silencing strategies and high-resolution microscopy, we find that modifying action-outcome expectations is associated with fewer immature spines and a greater proportion of mature spines in the ventrolateral orbitofrontal cortex (OFC). Given that the OFC is involved in prospectively calculating the likely outcomes of one's behavior, even when they are not observable, constraining spinogenesis while preserving mature spines may be important for maintaining durable expectations.


Subject(s)
Anticipation, Psychological/physiology , Dendritic Spines/physiology , Neuronal Plasticity/physiology , Prefrontal Cortex/physiology , Reward , Animals , Conditioning, Operant , Decision Making , Dendritic Spines/ultrastructure , Dependovirus/genetics , Feeding Behavior , Female , Fragile X Mental Retardation Protein/antagonists & inhibitors , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/physiology , Gene Knockdown Techniques , Genes, Reporter , Genetic Vectors/administration & dosage , Male , Mice , Mice, Inbred C57BL , Optogenetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Reinforcement, Psychology
11.
Neurobiol Dis ; 145: 105055, 2020 11.
Article in English | MEDLINE | ID: mdl-32829028

ABSTRACT

A GGGGCC hexanucleotide repeat expansion in the first intron of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Compelling evidence suggests that gain of toxicity from the bidirectionally transcribed repeat expanded RNAs plays a central role in disease pathogenesis. Two potential mechanisms have been proposed including RNA-mediated toxicity and/or the production of toxic dipeptide repeat proteins. In this review, we focus on the role of RNA mediated toxicity in ALS/FTD caused by the C9orf72 mutation and discuss arguments for and against this mechanism. In addition, we summarize how G4C2 repeat RNAs can elicit toxicity and potential therapeutic strategies to mitigate RNA-mediated toxicity.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Frontotemporal Dementia/pathology , RNA/toxicity , Amyotrophic Lateral Sclerosis/genetics , Animals , DNA Repeat Expansion , Humans
12.
Neurobiol Dis ; 146: 105085, 2020 12.
Article in English | MEDLINE | ID: mdl-32950644

ABSTRACT

Fused in sarcoma (FUS) is a RNA/DNA protein involved in multiple nuclear and cytoplasmic functions including transcription, splicing, mRNA trafficking, and stress granule formation. To accomplish these many functions, FUS must shuttle between cellular compartments in a highly regulated manner. When shuttling is disrupted, FUS abnormally accumulates into cytoplasmic inclusions that can be toxic. Disrupted shuttling of FUS into the nucleus is a hallmark of ~10% of frontotemporal lobar degeneration (FTLD) cases, the neuropathology that underlies frontotemporal dementia (FTD). Multiple pathways are known to disrupt nuclear/cytoplasmic shuttling of FUS. In earlier work, we discovered that double-strand DNA breaks (DSBs) trigger DNA-dependent protein kinase (DNA-PK) to phosphorylate FUS (p-FUS) at N-terminal residues leading to the cytoplasmic accumulation of FUS. Therefore, DNA damage may contribute to the development of FTLD pathology with FUS inclusions. In the present study, we examined how DSBs effect FUS phosphorylation in various primate and mouse cellular models. All cell lines derived from human and non-human primates exhibit N-terminal FUS phosphorylation following calicheamicin γ1 (CLM) induced DSBs. In contrast, we were unable to detect FUS phosphorylation in mouse-derived primary neurons or immortalized cell lines regardless of CLM treatment, duration, or concentration. Despite DNA damage induced by CLM treatment, we find that mouse cells do not phosphorylate FUS, likely due to reduced levels and activity of DNA-PK compared to human cells. Taken together, our work reveals that mouse-derived cellular models regulate FUS in an anomalous manner compared to primate cells. This raises the possibility that mouse models may not fully recapitulate the pathogenic cascades that lead to FTLD with FUS pathology.


Subject(s)
Brain/metabolism , DNA Damage/physiology , DNA/metabolism , Frontotemporal Lobar Degeneration/metabolism , RNA-Binding Protein FUS/genetics , Animals , Frontotemporal Lobar Degeneration/genetics , Humans , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Mice , Mutation/genetics , Neurons/metabolism , Phosphorylation , TATA-Binding Protein Associated Factors/genetics
13.
Nat Rev Neurosci ; 16(10): 595-605, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26350240

ABSTRACT

Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Homeostasis/genetics , Animals , Fragile X Mental Retardation Protein/biosynthesis , Fragile X Syndrome/physiopathology , Gene Expression , Humans , Mice , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
14.
Mol Cell ; 47(2): 253-66, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22727665

ABSTRACT

Translational control of mRNAs in dendrites is essential for certain forms of synaptic plasticity and learning and memory. CPEB is an RNA-binding protein that regulates local translation in dendrites. Here, we identify poly(A) polymerase Gld2, deadenylase PARN, and translation inhibitory factor neuroguidin (Ngd) as components of a dendritic CPEB-associated polyadenylation apparatus. Synaptic stimulation induces phosphorylation of CPEB, PARN expulsion from the ribonucleoprotein complex, and polyadenylation in dendrites. A screen for mRNAs whose polyadenylation is altered by Gld2 depletion identified >100 transcripts including one encoding NR2A, an NMDA receptor subunit. shRNA depletion studies demonstrate that Gld2 promotes and Ngd inhibits dendritic NR2A expression. Finally, shRNA-mediated depletion of Gld2 in vivo attenuates protein synthesis-dependent long-term potentiation (LTP) at hippocampal dentate gyrus synapses; conversely, Ngd depletion enhances LTP. These results identify a pivotal role for polyadenylation and the opposing effects of Gld2 and Ngd in hippocampal synaptic plasticity.


Subject(s)
Cytoplasm/metabolism , Neuronal Plasticity , Protein Biosynthesis , Synaptic Transmission , Animals , Dendrites/metabolism , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Polyadenylation , Polynucleotide Adenylyltransferase/metabolism , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Repressor Proteins/metabolism , Ribonucleoproteins/metabolism , Transcription Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism
15.
Hum Mol Genet ; 26(19): 3663-3681, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28666327

ABSTRACT

A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo.


Subject(s)
Brain/physiology , Nuclear Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Animals , Brain/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Nucleus/metabolism , Conserved Sequence , Exons , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Nuclear Proteins/genetics , Poly(A)-Binding Proteins , Protein Isoforms , RNA/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
16.
Mol Cell ; 42(5): 673-88, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21658607

ABSTRACT

The molecular mechanism for how RISC and microRNAs selectively and reversibly regulate mRNA translation in response to receptor signaling is unknown but could provide a means for temporal and spatial control of translation. Here we show that miR-125a targeting PSD-95 mRNA allows reversible inhibition of translation and regulation by gp1 mGluR signaling. Inhibition of miR-125a increased PSD-95 levels in dendrites and altered dendritic spine morphology. Bidirectional control of PSD-95 expression depends on miR-125a and FMRP phosphorylation status. miR-125a levels at synapses and its association with AGO2 are reduced in Fmr1 KO. FMRP phosphorylation promotes the formation of an AGO2-miR-125a inhibitory complex on PSD-95 mRNA, whereas mGluR signaling of translation requires FMRP dephosphorylation and release of AGO2 from the mRNA. These findings reveal a mechanism whereby FMRP phosphorylation provides a reversible switch for AGO2 and microRNA to selectively regulate mRNA translation at synapses in response to receptor activation.


Subject(s)
Fragile X Mental Retardation Protein/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , MicroRNAs/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Argonaute Proteins , Dendrites/metabolism , Disks Large Homolog 4 Protein , Eukaryotic Initiation Factor-2/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/physiology , Gene Knockdown Techniques , Gene Knockout Techniques , Guanylate Kinases , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphorylation , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
17.
J Neurosci ; 37(7): 1685-1695, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28073938

ABSTRACT

Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases ß-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of ß-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports ß-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance.SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway.


Subject(s)
Axons/physiology , Hedgehog Proteins/metabolism , Neurons/cytology , Protein Biosynthesis/physiology , Actins/genetics , Actins/metabolism , Animals , Brain/cytology , Cells, Cultured , Chickens , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Hedgehog Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Organ Culture Techniques , Pregnancy , Protein Biosynthesis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology
18.
Nature ; 488(7412): 499-503, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22801503

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Genetic Predisposition to Disease/genetics , Mutant Proteins/metabolism , Mutation/genetics , Profilins/genetics , Profilins/metabolism , Actins/metabolism , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/metabolism , Animals , Axons/metabolism , Axons/pathology , Cells, Cultured , Exome/genetics , Female , Growth Cones/metabolism , High-Throughput Nucleotide Sequencing , Humans , Jews/genetics , Male , Mice , Models, Molecular , Molecular Sequence Data , Motor Neurons/cytology , Motor Neurons/metabolism , Mutant Proteins/genetics , Pedigree , Protein Conformation , Ubiquitination , White People/genetics
19.
Nucleic Acids Res ; 44(14): 6649-59, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27378784

ABSTRACT

Fragile X mental retardation protein (FMRP) is a multifunctional RNA-binding protein with crucial roles in neuronal development and function. Efforts aimed at elucidating how FMRP target mRNAs are selected have produced divergent sets of target mRNA and putative FMRP-bound motifs, and a clear understanding of FMRP's binding determinants has been lacking. To clarify FMRP's binding to its target mRNAs, we produced a shared dataset of FMRP consensus binding sequences (FCBS), which were reproducibly identified in two published FMRP CLIP sequencing datasets. This comparative dataset revealed that of the various sequence and structural motifs that have been proposed to specify FMRP binding, the short sequence motifs TGGA and GAC were corroborated, and a novel TAY motif was identified. In addition, the distribution of the FCBS set demonstrates that FMRP preferentially binds to the coding region of its targets but also revealed binding along 3' UTRs in a subset of target mRNAs. Beyond probing these putative motifs, the FCBS dataset of reproducibly identified FMRP binding sites is a valuable tool for investigating FMRP targets and function.


Subject(s)
Consensus Sequence , Fragile X Mental Retardation Protein/metabolism , Base Sequence , Binding Sites , Codon/genetics , DNA Methylation/genetics , Databases, Protein , Fragile X Mental Retardation Protein/chemistry , G-Quadruplexes , HEK293 Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleotide Motifs/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Proc Natl Acad Sci U S A ; 112(47): E6553-61, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26554012

ABSTRACT

Fragile X syndrome is a common cause of intellectual disability and autism spectrum disorder. The gene underlying the disorder, fragile X mental retardation 1 (FMR1), is silenced in most cases by a CGG-repeat expansion mutation in the 5' untranslated region (UTR). Recently, we identified a variant located in the 3'UTR of FMR1 enriched among developmentally delayed males with normal repeat lengths. A patient-derived cell line revealed reduced levels of endogenous fragile X mental retardation protein (FMRP), and a reporter containing a patient 3'UTR caused a decrease in expression. A control reporter expressed in cultured mouse cortical neurons showed an expected increase following synaptic stimulation that was absent when expressing the patient reporter, suggesting an impaired response to neuronal activity. Mobility-shift assays using a control RNA detected an RNA-protein interaction that is lost with the patient RNA, and HuR was subsequently identified as an associated protein. Cross-linking immunoprecipitation experiments identified the locus as an in vivo target of HuR, supporting our in vitro findings. These data suggest that the disrupted interaction of HuR impairs activity-dependent translation of FMRP, which may hinder synaptic plasticity in a clinically significant fashion.


Subject(s)
3' Untranslated Regions/genetics , ELAV-Like Protein 1/metabolism , Fragile X Mental Retardation Protein/genetics , Neurons/metabolism , Protein Biosynthesis , Alleles , Animals , Base Sequence , Biotinylation , Cells, Cultured , Dendrites/metabolism , Electrophoretic Mobility Shift Assay , Fragile X Mental Retardation Protein/metabolism , Genes, Reporter , Genetic Loci , Humans , Luciferases/metabolism , Male , Mice , Molecular Sequence Data , Protein Binding , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Glutamate/metabolism , Sequence Alignment , Signal Transduction/genetics , Synapses/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL