Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23993102

ABSTRACT

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Subject(s)
Databases, Pharmaceutical , Drug Discovery , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Neoplasms/genetics
2.
J Biol Chem ; 299(6): 104713, 2023 06.
Article in English | MEDLINE | ID: mdl-37061003

ABSTRACT

Heparan sulfate (HS) is a long, linear polysaccharide that is ubiquitously expressed in all animal cells and plays a key role in many cellular processes, including cell signaling and development. Dysregulation of HS assembly has been implicated in pathophysiological conditions, such as tumorigenesis and rare genetic disorders. HS biosynthesis occurs in a non-template-driven manner in the endoplasmic reticulum and Golgi through the activity of a large group of biosynthetic enzymes. While much is known about its biosynthesis, little is understood about the regulation of HS assembly across diverse tissue types and disease states. To address this gap in knowledge, we recently performed genome-wide CRISPR/Cas9 screens to identify novel regulatory factors of HS biosynthesis. From these screens, we identified the alpha globin transcription factor, TFCP2, as a top hit. To investigate the role of TFCP2 in HS assembly, we targeted TFCP2 expression in human melanoma cells using the CRISPR/Cas9 system. TFCP2 knockout cells exhibited decreased fibroblast growth factor binding to cell surface HS, alterations in HS composition, and slowed cell growth compared to wild-type cells. Additionally, RNA sequencing revealed that TFCP2 regulates the expression of multiple enzymes involved in HS assembly, including the secreted endosulfatase, SULF1. Pharmacological targeting of TFCP2 activity similarly reduced growth factor binding and increased SULF1 expression, and the knockdown of SULF1 expression in TFCP2 mutant cells restored melanoma cell growth. Overall, these studies identify TFCP2 as a novel transcriptional regulator of HS and highlight HS-protein interactions as a possible target to slow melanoma growth.


Subject(s)
Heparitin Sulfate , Melanoma , Animals , Humans , Heparitin Sulfate/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Cell Proliferation , Melanoma/genetics , DNA-Binding Proteins/metabolism
3.
Clin Immunol ; 261: 109942, 2024 04.
Article in English | MEDLINE | ID: mdl-38367737

ABSTRACT

Severe combined immunodeficiency (SCID) is characterized by a severe deficiency in T cell numbers. We analyzed data collected (n = 307) for PHA-based T cell proliferation from the PIDTC SCID protocol 6901, using either a radioactive or flow cytometry method. In comparing the two groups, a smaller number of the patients tested by flow cytometry had <10% of the lower limit of normal proliferation as compared to the radioactive method (p = 0.02). Further, in patients with CD3+ T cell counts between 51 and 300 cells/µL, there was a higher proliferative response with the PHA flow assay compared to the 3H-T assay (p < 0.0001), suggesting that the method of analysis influences the resolution and interpretation of PHA results. Importantly, we observed many SCID patients with profound T cell lymphopenia having normal T cell proliferation when assessed by flow cytometry. We recommend this test be considered only as supportive in the diagnosis of typical SCID.


Subject(s)
Lymphopenia , Severe Combined Immunodeficiency , Infant, Newborn , Humans , Severe Combined Immunodeficiency/diagnosis , Lymphopenia/diagnosis , Neonatal Screening/methods , T-Lymphocytes , Cell Proliferation
4.
Semin Cancer Biol ; 78: 78-89, 2022 01.
Article in English | MEDLINE | ID: mdl-33626407

ABSTRACT

Metastatic spread in breast cancer patients is the major driver of cancer-related deaths. A unique subset of cells disseminated from pre-invasive or primary tumor lesions are recognized as the main seeds for metastatic outgrowth. Disseminated cancer cells (DCCs) can migrate to distant organs and settle in a dormant state for a prolonged period until they emerge to overt metastases. Understanding the biology of breast cancer cells dissemination, dormancy and reactivation to form overt metastases has become an important focus. In this review, we discuss the recent advancements of molecular pathways involving breast cancer cell dissemination, role of chemokine-chemokine receptor networks in DCCs migration, DCCs phenotypic heterogeneity and unique genes signatures in tumor dormancy, microenvironmental regulation and specific niches that favors DCCs homing and dormancy. In addition, we also discuss recent findings relating to the role of immune response on DCC dissemination and dormancy. With recent advances in the field of immunotherapy/targeted therapy and its beneficial effects in cancer treatment, this review will focus on their impact on DCCs, reversal of stemness, tumor dormancy and metastatic relapse.


Subject(s)
Breast Neoplasms/pathology , Tumor Microenvironment , Breast Neoplasms/therapy , Clinical Decision-Making , Disease Management , Disease Progression , Female , Humans , Neoplasm Metastasis
5.
Breast Cancer Res ; 25(1): 117, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794508

ABSTRACT

BACKGROUND: Despite major improvements in treatment of HER2-positive metastatic breast cancer (MBC), only few patients achieve complete remission and remain progression free for a prolonged time. The tumor immune microenvironment plays an important role in the response to treatment in HER2-positive breast cancer and could contain valuable prognostic information. Detailed information on the cancer-immune cell interactions in HER2-positive MBC is however still lacking. By characterizing the tumor immune microenvironment in patients with HER2-positive MBC, we aimed to get a better understanding why overall survival (OS) differs so widely and which alternative treatment approaches may improve outcome. METHODS: We included all patients with HER2-positive MBC who were treated with trastuzumab-based palliative therapy in the Netherlands Cancer Institute between 2000 and 2014 and for whom pre-treatment tissue from the primary tumor or from metastases was available. Infiltrating immune cells and their spatial relationships to one another and to tumor cells were characterized by immunohistochemistry and multiplex immunofluorescence. We also evaluated immune signatures and other key pathways using next-generation RNA-sequencing data. With nine years median follow-up from initial diagnosis of MBC, we investigated the association between tumor and immune characteristics and outcome. RESULTS: A total of 124 patients with 147 samples were included and evaluated. The different technologies showed high correlations between each other. T-cells were less prevalent in metastases compared to primary tumors, whereas B-cells and regulatory T-cells (Tregs) were comparable between primary tumors and metastases. Stromal tumor-infiltrating lymphocytes in general were not associated with OS. The infiltration of B-cells and Tregs in the primary tumor was associated with unfavorable OS. Four signatures classifying the extracellular matrix of primary tumors showed differential survival in the population as a whole. CONCLUSIONS: In a real-world cohort of 124 patients with HER2-positive MBC, B-cells, and Tregs in primary tumors are associated with unfavorable survival. With this paper, we provide a comprehensive insight in the tumor immune microenvironment that could guide further research into development of novel immunomodulatory strategies.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , T-Lymphocytes, Regulatory , Trastuzumab , Prognosis , Antineoplastic Combined Chemotherapy Protocols , Tumor Microenvironment
6.
Breast Cancer Res Treat ; 198(2): 383-390, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36689092

ABSTRACT

PURPOSE: Disseminated tumor cells (DTCs) expressing epithelial markers in the bone marrow are associated with recurrence and death, but little is known about risk factors predicting their occurrence. We detected EPCAM+/CD45- cells in bone marrow from early stage breast cancer patients after neoadjuvant chemotherapy (NAC) in the I-SPY 2 Trial and examined clinicopathologic factors and outcomes. METHODS: Patients who signed consent for SURMOUNT, a sub-study of the I-SPY 2 Trial (NCT01042379), had bone marrow collected after NAC at the time of surgery. EPCAM+CD45- cells in 4 mLs of bone marrow aspirate were enumerated using immunomagnetic enrichment/flow cytometry (IE/FC). Patients with > 4.16 EPCAM+CD45- cells per mL of bone marrow were classified as DTC-positive. Tumor response was assessed using the residual cancer burden (RCB), a standardized approach to quantitate the extent of residual invasive cancer present in the breast and the axillary lymph nodes after NAC. Association of DTC-positivity with clinicopathologic variables and survival was examined. RESULTS: A total of 73 patients were enrolled, 51 of whom had successful EPCAM+CD45- cell enumeration. Twenty-four of 51 (47.1%) were DTC-positive. The DTC-positivity rate was similar across receptor subtypes, but DTC-positive patients were significantly younger (p = 0.0239) and had larger pretreatment tumors compared to DTC-negative patients (p = 0.0319). Twenty of 51 (39.2%) achieved a pathologic complete response (pCR). While DTC-positivity was not associated with achieving pCR, it was significantly associated with higher RCB class (RCB-II/III, 62.5% vs. RCB-0/I; 33.3%; Chi-squared p = 0.0373). No significant correlation was observed between DTC-positivity and distant recurrence-free survival (p = 0.38, median follow-up = 3.2 years). CONCLUSION: DTC-positivity at surgery after NAC was higher in younger patients, those with larger tumors, and those with residual disease at surgery.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Bone Marrow/pathology , Epithelial Cell Adhesion Molecule/therapeutic use , Neoadjuvant Therapy , Flow Cytometry , Prognosis
7.
Am J Physiol Cell Physiol ; 322(5): C849-C864, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35294848

ABSTRACT

Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.


Subject(s)
Genomics , Glycosaminoglycans , Animals , Extracellular Matrix/metabolism , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Glycosylation , Homeostasis , Humans , Mammals/metabolism
8.
Mol Ther ; 29(4): 1541-1556, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33412308

ABSTRACT

HER2 breast cancer (BC) remains a significant problem in patients with locally advanced or metastatic BC. We investigated the relationship between T helper 1 (Th1) immune response and the proteasomal degradation pathway (PDP), in HER2-sensitive and -resistant cells. HER2 overexpression is partially maintained because E3 ubiquitin ligase Cullin5 (CUL5), which degrades HER2, is frequently mutated or underexpressed, while the client-protective co-chaperones cell division cycle 37 (Cdc37) and heat shock protein 90 (Hsp90) are increased translating to diminished survival. The Th1 cytokine interferon (IFN)-γ caused increased CUL5 expression and marked dissociation of both Cdc37 and Hsp90 from HER2, causing significant surface loss of HER2, diminished growth, and induction of tumor senescence. In HER2-resistant mammary carcinoma, either IFN-γ or Th1-polarizing anti-HER2 vaccination, when administered with anti-HER2 antibodies, demonstrated increased intratumor CUL5 expression, decreased surface HER2, and tumor senescence with significant therapeutic activity. IFN-γ synergized with multiple HER2-targeted agents to decrease surface HER2 expression, resulting in decreased tumor growth. These data suggest a novel function of IFN-γ that regulates HER2 through the PDP pathway and provides an opportunity to impact HER2 responses through anti-tumor immunity.


Subject(s)
Breast Neoplasms/drug therapy , Cullin Proteins/genetics , Interferon-gamma/genetics , Receptor, ErbB-2/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cellular Senescence/genetics , Cellular Senescence/immunology , Chaperonins/genetics , Cullin Proteins/immunology , Cytokines/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/immunology , Humans , Interferon-gamma/immunology , Proteolysis , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Th1 Cells/drug effects , Th1 Cells/metabolism , Vaccination
9.
Molecules ; 27(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35163863

ABSTRACT

Cannabis is well-known for its numerous therapeutic activities, as demonstrated in pre-clinical and clinical studies primarily due to its bioactive compounds. The Cannabis industry is rapidly growing; therefore, product development and extraction methods have become crucial aspects of Cannabis research. The evaluation of the current extraction methods implemented in the Cannabis industry and scientific literature to produce consistent, reliable, and potent medicinal Cannabis extracts is prudent. Furthermore, these processes must be subjected to higher levels of scientific stringency, as Cannabis has been increasingly used for various ailments, and the Cannabis industry is receiving acceptance in different countries. We comprehensively analysed the current literature and drew a critical summary of the extraction methods implemented thus far to recover bioactive compounds from medicinal Cannabis. Moreover, this review outlines the major bioactive compounds in Cannabis, discusses critical factors affecting extraction yields, and proposes future considerations for the effective extraction of bioactive compounds from Cannabis. Overall, research on medicinal marijuana is limited, with most reports on the industrial hemp variety of Cannabis or pure isolates. We also propose the development of sustainable Cannabis extraction methods through the implementation of mathematical prediction models in future studies.


Subject(s)
Cannabinoids/isolation & purification , Chemical Fractionation/methods , Chromatography, High Pressure Liquid/methods , Medical Marijuana/chemistry , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Humans
10.
Cancer ; 127(13): 2342-2349, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33957704

ABSTRACT

BACKGROUND: Symptom burden and reduced quality of life (QOL) are considerable hurdles in oncology. The authors used the Patient-Reported Outcomes Measurement Information System (PROMIS), which assesses physical and psychosocial health, to establish a mean symptom burden, examine potential drivers, and characterize severe symptom burden in breast cancer patient subgroups with the goal of characterizing stage IV patient QOL and triaging patients to individualized supportive care services. METHODS: New patients at the University of California San Francisco Breast Care Center received questionnaires with 8 PROMIS domains: depression, anxiety, fatigue, sleep-related impairment, sleep disturbance, cognitive function, cognitive abilities, and physical function. PROMIS values were scored with the HealthMeasures service and were compared by age, cancer stage, and educational status. RESULTS: Stage IV patients with breast cancer (n = 169) reported higher depression and fatigue and worse cognitive function, cognitive abilities, and physical function than patients with stage 0 to III disease (n = 2577). As age increased, cognitive function impairment, depression, anxiety, and sleep-related symptoms decreased. More educated patients showed better physical function and less severe sleep disturbance and fatigue. Across all subgroups, patients with high anxiety had the greatest probability of worse symptom burden and function in other domains. CONCLUSIONS: This study provides an additional set of PROMIS population estimates across breast cancer demographic groups. The analysis of a large stage IV population reinforces that metastatic patients have impaired QOL across multiple domains. Because anxiety emerged as a potential driver of impaired QOL in other domains, earlier interventions to reduce anxiety could improve QOL overall. These analyses will help to determine appropriate thresholds of intervention. LAY SUMMARY: Patients receiving treatment for breast cancer can experience decreased quality of life. This study characterized differences in self-reported quality of life among patients of different ages, with different stages of cancer, and with different educational backgrounds. This study also examined the effect of decreased quality of life in one area (eg, anxiety) on another area (eg, difficulty in sleeping). Patients who were younger, had not attended college or technical school, or had stage IV cancer tended to have worse quality of life. Patients who had high levels of anxiety also tended to have high levels of impairment in other areas.


Subject(s)
Breast Neoplasms , Quality of Life , Anxiety/epidemiology , Anxiety/etiology , Anxiety/therapy , Breast Neoplasms/complications , Breast Neoplasms/therapy , Depression/epidemiology , Depression/etiology , Depression/therapy , Female , Humans , Information Systems , Patient Reported Outcome Measures
11.
J Membr Biol ; 253(3): 205-219, 2020 06.
Article in English | MEDLINE | ID: mdl-32279087

ABSTRACT

A planar lipid bilayer on a solid support serves as model system that explains fundamental aspects of membrane biology and enables us to characterize wide-range surface-sensitive techniques, including molecular engineering. The present study aims at understanding the process of single and multiple bilayer formation after the exposure of small unilamellar vesicles (SUVs) of dioleoyl phosphatidylcholine (DOPC) to mica substrate. Isolated single bilayer formation and co-existence of double and triple lipid bilayers in the aqueous medium have been quantitatively measured by atomic force microscopy and discussed the physicochemical mechanism. It has been observed that due to the strong adhesion of DOPC SUV to mica surface, vesicles of diluted solution rupture spontaneously and form isolated bilayer patches when they come in contact with the mica surface. No further lateral growth or movement of the bilayer patches has been observed upon increase of incubation time. However, the increase of vesicle number on the same surface area by successive deposition of DOPC solution of same concentration and increasing incubation time shows merging of the nearby patches as well as development of stacked second and third bilayers due to edge-guided rupture of adsorbed vesicles on first or second bilayer patches. Mechanisms of single and multi-bilayer formation and a theoretical interpretation of the process have been elucidated.


Subject(s)
Aluminum Silicates/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Dynamic Light Scattering , Microscopy, Atomic Force
12.
Toxicol Mech Methods ; 30(8): 590-604, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32713235

ABSTRACT

3-dimensional (3D) cell cultures are being increasingly recognized as physiologically more relevant in vitro models than traditional monolayer cultures, because they better mimic in vivo-like microenvironment, cell-cell and cell-extracellular matrix interactions. Nevertheless, the broader use of 3D models might be limited by requirements for special consumables, equipment, or skills for 3D cell cultures, and by their limited throughput and scalability. In this study, we optimized and adapted a commercially available agarose-micromolding technique to produce scaffold-free spheroid cultures. Brightfield microscopy was used for routine nondestructive and noninvasive evaluation of spheroid formation and growth. The workflow is compatible with manual, as well as high speed automated microscopic image acquisition, and it is supplemented with an in-house developed macro 'Spheroid_Finder' for open source software Fiji to facilitate rapid automated image analysis. This protocol was used to characterize and quantify spheroid formation and growth of two different hepatic cell lines, hTERT immortalized, but non-cancerous, adult human liver stem cell line HL1-hT1, and human hepatocellular carcinoma cell line HepG2, as well as their responses to a model antiproliferative and cytotoxic agent, 5-fluorouracil. The complete protocol provides a simple and ready-to-use solution to initiate scaffold-free spheroid cultures in any laboratory with standard equipment for mammalian in vitro cell culture work. Thus, it allows to increase throughput and scale of spheroid culture experiments, which can be greatly utilized in different areas of biomedical, pharmaceutical and toxicological research.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Fluorouracil/pharmacology , High-Throughput Screening Assays , Liver Neoplasms/drug therapy , Liver/drug effects , Stem Cells/drug effects , Antimetabolites, Antineoplastic/toxicity , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Culture Techniques , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Fluorouracil/toxicity , Hep G2 Cells , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Spheroids, Cellular , Stem Cells/metabolism , Stem Cells/pathology , Time Factors , Toxicity Tests , Workflow
14.
Bioinformatics ; 34(19): 3332-3339, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29688307

ABSTRACT

Motivation: In recent years there have been several efforts to generate sensitivity profiles of collections of genomically characterized cell lines to panels of candidate therapeutic compounds. These data provide the basis for the development of in silico models of sensitivity based on cellular, genetic, or expression biomarkers of cancer cells. However, a remaining challenge is an efficient way to identify accurate sets of biomarkers to validate. To address this challenge, we developed methodology using gene-expression profiles of human cancer cell lines to predict the responses of these cell lines to a panel of compounds. Results: We developed an iterative weighting scheme which, when applied to elastic net, a regularized regression method, significantly improves the overall accuracy of predictions, particularly in the highly sensitive response region. In addition to application of these methods to actual chemical sensitivity data, we investigated the effects of sample size, number of features, model sparsity, signal-to-noise ratio, and feature correlation on predictive performance using a simulation framework, particularly for situations where the number of covariates is much larger than sample size. While our method aims to be useful in therapeutic discovery and understanding of the basic mechanisms of action of drugs and their targets, it is generally applicable in any domain where predictions of extreme responses are of highest importance. Availability and implementation: The iterative and other weighting algorithms were implemented in R. The code is available at https://github.com/kiwtir/RWEN. The CTRP data are available at ftp://caftpd.nci.nih.gov/pub/OCG-DCC/CTD2/Broad/CTRPv2.1_2016_pub_NatChemBiol_12_109/ and the Sanger data at ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-6.0/. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/genetics , Algorithms , Cell Line, Tumor , Elasticity , Genomics/methods , Humans , Neoplasms/drug therapy
16.
Environ Sci Technol ; 52(17): 10078-10088, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30059226

ABSTRACT

Cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN) represent hazardous waterborne contaminants and potent human hepatotoxins. However, in vitro monolayer cultures of hepatic cell lines were found to recapitulate, poorly, major hepatocyte-specific functions and inadequately predict hepatotoxic effects of MC-LR and CYN. We utilized 3-dimensional (3D), scaffold-free spheroid cultures of human telomerase-immortalized adult liver stem cells HL1-hT1 to evaluate hepatotoxic potential of MC-LR and CYN. In monolayer cultures of HL1-hT1 cells, MC-LR did not induce cytotoxic effects (EC50 > 10 micromol/L), while CYN inhibited cell growth and viability (48h-96h EC50 ≈ 5.5-0.6 micromol/L). Growth and viability of small growing spheroids were inhibited by both cyanotoxins (≥0.1 micromol/L) and were associated with blebbing and disintegration at the spheroid surface. Hepatospheroid damage and viability reduction were observed also in large mature spheroids, with viability 96h-EC50 values being 0.04 micromol/L for MC-LR and 0.1 micromol/L for CYN, and No Observed Effect Concentrations <0.01 micromol/L. Spheroid cultures of adult human liver stem cells HL1-hT1 exhibit sensitivity comparable to cultures of primary hepatocytes and provide a simple, practical, and cost-effective tool, which can be effectively used in environmental and toxicological research, including assessment of hepatotoxic potential and effect-based monitoring of various samples contaminated with toxic cyanobacteria.


Subject(s)
Cyanobacteria , Marine Toxins , Bacterial Toxins , Cyanobacteria Toxins , Humans , Liver , Microcystins , Stem Cells
17.
Horm Behav ; 93: 18-30, 2017 07.
Article in English | MEDLINE | ID: mdl-28389277

ABSTRACT

Growth hormone (GH) has a significant influence on cognitive performance in humans and other mammals. To understand the influence of altered GH action on cognition, we assessed spatial learning and memory using a Barnes maze (BM) comparing twelve-month old, male, bovine GH (bGH) and GH receptor antagonist (GHA) transgenic mice and their corresponding wild type (WT) littermates. During the acquisition training period in the BM, bGH mice showed increased latency, traveled longer path lengths and made more errors to reach the target than WT mice, indicating significantly poorer learning. Short-term memory (STM) and long-term memory (LTM) trials showed significantly suppressed memory retention in bGH mice when compared to the WT group. Conversely, GHA mice showed significantly better learning parameters (latency, path length and errors) and increased use of an efficient search strategy than WT mice. Our study indicates a negative impact of GH excess and a beneficial effect of the inhibition of GH action on spatial learning and memory and, therefore, cognitive performance in male mice. Further research to elucidate GH's role in brain function will facilitate identifying therapeutic applications of GH or GHA for neuropathological and neurodegenerative conditions.


Subject(s)
Growth Hormone/genetics , Growth Hormone/metabolism , Memory/drug effects , Spatial Learning/physiology , Animals , Cattle , Growth Hormone/agonists , Growth Hormone/pharmacology , Humans , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Binding , Spatial Learning/drug effects
18.
Chemistry ; 22(26): 8855-63, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27219524

ABSTRACT

Low cost, simple, and environmentally friendly strategies for white-light generation which do not require rare-earth phosphors or other toxic or elementally scare species remain an essentially unmet challenge. Progress in the area of all-organic approaches is highly sought, single molecular systems remaining a particular challenge. Taking inspiration from the designer nature of ionic-liquid chemistry, we now introduce a new strategy toward white-light emission based on the facile generation of nanoparticles comprising three different fluorophores assembled in a well-defined stoichiometry purely through electrostatic interactions. The building blocks consist of the fluorophores aminopyrene, fluorescein, and rhodamine 6G which represent blue, green, and red-emitting species, respectively. Spherical nanoparticles 16(±5) nm in size were prepared which display bright white-light emission with high fluorescence quantum efficiency (26 %) and color coordinate at (0.29, 0.38) which lie in close proximity to pure white light (0.33, 0.33). It is noteworthy that this same fluorophore mixture in free solution yields only blue emission. Density functional theory calculations reveal H-bond and ground-state proton transfer mediated absolute non-parallel orientation of the constituent units which result in frustrated energy transfer, giving rise to emission from the individual centers and concomitant white-light emission.


Subject(s)
Fluorescein/chemistry , Light , Nanoparticles/chemistry , Rhodamines/chemistry , Fluorescence Resonance Energy Transfer , Hydrogen Bonding , Molecular Conformation , Particle Size , Protons , Quantum Theory , Static Electricity , Thermogravimetry
19.
Proc Natl Acad Sci U S A ; 110(17): E1641-50, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23572591

ABSTRACT

Recent global proteomic and genomic studies have determined that lysine acetylation is a highly abundant posttranslational modification. The next challenge is connecting lysine acetyltransferases (KATs) to their cellular targets. We hypothesize that proteins that physically interact with KATs may not only predict the cellular function of the KATs but may be acetylation targets. We have developed a mass spectrometry-based method that generates a KAT protein interaction network from which we simultaneously identify both in vivo acetylation sites and in vitro acetylation sites. This modified chromatin-immunopurification coupled to an in vitro KAT assay with mass spectrometry (mChIP-KAT-MS) was applied to the Saccharomyces cerevisiae KAT nucleosome acetyltransferase of histone H4 (NuA4). Using mChIP-KAT-MS, we define the NuA4 interactome and in vitro-enriched acetylome, identifying over 70 previously undescribed physical interaction partners for the complex and over 150 acetyl lysine residues, of which 108 are NuA4-specific in vitro sites. Through this method we determine NuA4 acetylation of its own subunit Epl1 is a means of self-regulation and identify a unique link between NuA4 and the spindle pole body. Our work demonstrates that this methodology may serve as a valuable tool in connecting KATs with their cellular targets.


Subject(s)
Chromatin Immunoprecipitation/methods , Histone Acetyltransferases/metabolism , Lysine/metabolism , Mass Spectrometry/methods , Protein Interaction Mapping/methods , Protein Processing, Post-Translational/physiology , Saccharomyces cerevisiae Proteins/metabolism , Acetylation , Saccharomyces cerevisiae , Substrate Specificity
20.
Environ Sci Technol ; 49(20): 12457-64, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26380879

ABSTRACT

Microcystins (MCs) are primarily hepatotoxins produced by cyanobacteria and are responsible for intoxication in humans and animals. There are many incidents of chronic exposure to MCs, which have been attributed to the inappropriate treatment of water supplies or contaminated food. Using RAW 264.7 macrophages, we showed the potency of microcystin-LR (MC-LR) to stimulate production of pro-inflammatory cytokines (tumor necrosis factor α and interleukin-6) as a consequence of fast nuclear factor κB and nitrogen-activated protein kinase activation. In contrast to other studies, the observed effects were not attributed to the intracellular inhibition of protein phosphatases 1/2A due to lack of specific transmembrane transporters for MCs. However, the MC-LR-induced activation of macrophages was effectively inhibited by a specific peptide that blocks signaling of receptors, which play a pivotal role in the innate immune responses. Taken together, we showed for the first time that MC-LR could interfere with macrophage receptors that are responsible for triggering the above-mentioned signaling pathways. These findings provide an interesting mechanistic explanation of some adverse health outcomes associated with toxic cyanobacteria and MCs.


Subject(s)
Cyanobacteria/pathogenicity , Immunity, Innate/drug effects , Microcystins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cell Line/drug effects , Immunologic Factors/toxicity , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Interleukin-6/metabolism , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Marine Toxins , Mice , NF-kappa B/metabolism , Protein Phosphatase 2/metabolism , Toxicity Tests, Chronic/methods , Tumor Necrosis Factor-alpha/metabolism , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL