Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 21(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34883973

ABSTRACT

IoT-enabled devices are making it easier and cheaper than ever to capture in situ environmental data and deliver these data-in the form of graphical visualisations-to farmers in a matter of seconds. In this work we describe an aquaculture focused environmental monitoring network consisting of LoRaWAN-enabled atmospheric and marine sensors attached to buoys on Clyde River, located on the South Coast of New South Wales, Australia. This sensor network provides oyster farmers operating on the river with the capacity to make informed, accurate and rapid decisions that enhance their ability to respond to adverse environmental events-typically flooding and heat waves. The system represents an end-to-end approach that involves deploying a sensor network, analysing the data, creating visualisations in collaboration with farmers and delivering them to them in real-time via a website known as FarmDecisionTECH®. We compared this network with previously available infrastructure, the results of which demonstrate that an in situ weather station was ∼5 ∘C hotter than the closest available real-time weather station (∼20 km away from Clyde River) during a summertime heat wave. Heat waves can result in oysters dying due to exposure if temperatures rise above 30 ∘C for extended periods of time (such as heat waves), which will mean a loss in income for the farmers; thus, this work stresses the need for accurate in situ monitoring to prevent the loss of oysters through informed farm management practices. Finally, an approach is proposed to present high-dimensional datasets captured from the sensor network to oyster farmers in a clear and informative manner.


Subject(s)
Aquaculture , Environmental Monitoring , Farms , Temperature , Weather
2.
Photosynth Res ; 142(3): 361-368, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31541419

ABSTRACT

Chlorophyll a fluorescence is the most widely used method to study photosynthesis and plant stress. While several commercial fluorometers are available, there is a need for a low-cost and highly customisable chlorophyll fluorometer. Such a device would aid in performing high-throughput assessment of photosynthesis, as these instruments can be mass-produced. Novel investigations into photosynthesis can also be performed as a result of the user's ability to modify the devices functionality for their specific needs. Motivated by this, we present an open-source chlorophyll fluorometer based on the Kautsky induction curve (OJIP). The instrument consists of low-cost, easy-to-acquire electrical components and an open-source microcontroller (Arduino Mega) whose performance is equivalent to that of commercial instruments. Two 3D printable Open-JIP configurations are presented, one for higher plants and the other for microalgae cells in suspension. Directions for its construction are presented and the instrument is benchmarked against widely used commercial chlorophyll fluorometers.


Subject(s)
Chlorophyll A/chemistry , Fluorometry/instrumentation , Chlorella vulgaris/chemistry , Equipment Design , Fluorescence , Fluorometry/methods , Microalgae/chemistry , Microalgae/metabolism , Plants/chemistry , Plants/metabolism , Synechococcus/chemistry
3.
Trends Plant Sci ; 28(9): 1004-1013, 2023 09.
Article in English | MEDLINE | ID: mdl-37137749

ABSTRACT

Phenomics is a relatively new discipline of biology that has been widely applied in several fields, mainly in crop sciences. We reviewed the concepts used in this discipline (particularly for plants) and found a lack of consensus on what defines a phenomic study. Furthermore, phenomics has been primarily developed around its technical aspects (operationalization), while the conceptual framework of the actual research lags behind. Each research group has given its own interpretation of this 'omic' and thus unwittingly created a 'conceptual controversy'. Addressing this issue is of particular importance, as the experimental designs and concepts of phenomics are so diverse that it is difficult to compare studies. In this opinion article, we evaluate the conceptual framework of phenomics.


Subject(s)
Concept Formation , Phenomics , Phenotype , Plant Physiological Phenomena , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL