Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Biometals ; 26(5): 813-25, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23897315

ABSTRACT

Zn(II) complexes with norfloxacin (NOR) in the absence or in the presence of 1,10-phenanthroline (phen) were obtained and characterized. In both complexes, the ligand NOR was coordinated through a keto and a carboxyl oxygen. Tetrahedral and octahedral geometries were proposed for [ZnCl2(NOR)]·H2O (1) and [ZnCl2(NOR)(phen)]·2H2O (2), respectively. Since the biological activity of the chemicals depends on the pH value, pH titrations of the Zn(II) complexes were performed. UV spectroscopic studies of the interaction of the complexes with calf-thymus DNA (CT DNA) have suggested that they can bind to CT DNA with moderate affinity in an intercalative mode. The interactions between the Zn(II) complexes and bovine serum albumin (BSA) were investigated by steady-state and time-resolved fluorescence spectroscopy at pH 7.4. The experimental data showed static quenching of BSA fluorescence, indicating that both complexes bind to BSA. A modified Stern-Volmer plot for the quenching by complex 2 demonstrated preferential binding near one of the two tryptophan residues of BSA. The binding constants obtained (K b ) showed that BSA had a two orders of magnitude higher affinity for complex 2 than for 1. The results also showed that the affinity of both complexes for BSA was much higher than for DNA. This preferential interaction with protein sites could be important to their biological mechanisms of action. The analysis in vitro of the Zn(II) complexes and corresponding ligand were assayed against Trypanosoma cruzi, the causative agent of Chagas disease and the data showed that complex 2 was the most active against bloodstream trypomastigotes.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , DNA/chemistry , Norfloxacin/chemistry , Organometallic Compounds/pharmacology , Serum Albumin, Bovine/chemistry , Trypanosoma cruzi/drug effects , Zinc/chemistry , Animals , Antiprotozoal Agents/chemical synthesis , Binding Sites/drug effects , Cattle , Dose-Response Relationship, Drug , Fluorescence , Hydrogen-Ion Concentration , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship
2.
Chem Biol Drug Des ; 92(3): 1670-1682, 2018 09.
Article in English | MEDLINE | ID: mdl-29745048

ABSTRACT

Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease.


Subject(s)
Chagas Disease/drug therapy , Nitroimidazoles/chemistry , Triazoles/chemistry , Trypanocidal Agents/chemistry , Animals , Cell Line , Cell Survival/drug effects , Chagas Disease/veterinary , Male , Mice , Nifurtimox/chemistry , Nifurtimox/pharmacology , Nifurtimox/therapeutic use , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL