Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047338

ABSTRACT

The σ1 receptor (σ1-R) is an enigmatic endoplasmic reticulum resident transmembrane protein implicated in a variety of central nervous system disorders and whose agonists have neuroprotective activity. In spite of σ1-R's physio-pathological and pharmacological importance, two of the most important features required to fully understand σ1-R function, namely the receptor endogenous ligand(s) and the molecular mechanism of ligand access to the binding site, have not yet been unequivocally determined. In this work, we performed molecular dynamics (MD) simulations to help clarify the potential route of access of ligand(s) to the σ1-R binding site, on which discordant results had been reported in the literature. Further, we combined computational and experimental procedures (i.e., virtual screening (VS), electron density map fitting and fluorescence titration experiments) to provide indications about the nature of σ1-R endogenous ligand(s). Our MD simulations on human σ1-R suggested that ligands access the binding site through a cavity that opens on the protein surface in contact with the membrane, in agreement with previous experimental studies on σ1-R from Xenopus laevis. Additionally, steroids were found to be among the preferred σ1-R ligands predicted by VS, and 16,17-didehydroprogesterone was shown by fluorescence titration to bind human σ1-R, with significantly higher affinity than the prototypic σ1-R ligand pridopidine in the same essay. These results support the hypothesis that steroids are among the most important physiological σ1-R ligands.


Subject(s)
Molecular Dynamics Simulation , Receptors, sigma , Humans , Binding Sites , Ligands , Protein Binding , Receptors, sigma/metabolism , Steroids , Sigma-1 Receptor
2.
J Biol Chem ; 296: 100795, 2021.
Article in English | MEDLINE | ID: mdl-34019876

ABSTRACT

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a pivotal role in metabolism as an enzyme cofactor. PLP is a very reactive molecule and can be very toxic unless its intracellular concentration is finely regulated. In Escherichia coli, PLP formation is catalyzed by pyridoxine 5'-phosphate oxidase (PNPO), a homodimeric FMN-dependent enzyme that is responsible for the last step of PLP biosynthesis and is also involved in the PLP salvage pathway. We have recently observed that E. coli PNPO undergoes an allosteric feedback inhibition by PLP, caused by a strong allosteric coupling between PLP binding at the allosteric site and substrate binding at the active site. Here we report the crystallographic identification of the PLP allosteric site, located at the interface between the enzyme subunits and mainly circumscribed by three arginine residues (Arg23, Arg24, and Arg215) that form an "arginine cage" and efficiently trap PLP. The crystal structure of the PNPO-PLP complex, characterized by a marked structural asymmetry, presents only one PLP molecule bound at the allosteric site of one monomer and sheds light on the allosteric inhibition mechanism that makes the enzyme-substrate-PLP ternary complex catalytically incompetent. Site-directed mutagenesis studies focused on the arginine cage validate the identity of the allosteric site and provide an effective means to modulate the allosteric properties of the enzyme, from the loosening of the allosteric coupling (in the R23L/R24L and R23L/R215L variants) to the complete loss of allosteric properties (in the R23L/R24L/R21L variant).


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Pyridoxal Phosphate/metabolism , Pyridoxaminephosphate Oxidase/metabolism , Allosteric Site , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , Pyridoxaminephosphate Oxidase/chemistry
3.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525510

ABSTRACT

Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.


Subject(s)
Fibroblasts/cytology , Huntington Disease/metabolism , Pharmaceutical Preparations/chemistry , Receptors, sigma/metabolism , Adult , Cell Proliferation , Cells, Cultured , Computer Simulation , Databases, Pharmaceutical , Drug Evaluation, Preclinical , Drug Repositioning , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Huntington Disease/drug therapy , Male , Middle Aged , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Receptors, sigma/chemistry , Structure-Activity Relationship , Surface Plasmon Resonance , Sigma-1 Receptor
4.
Amino Acids ; 52(2): 247-259, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31037461

ABSTRACT

Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777-TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Leishmania infantum/drug effects , Sulfides/chemistry , Sulfides/pharmacology , Amino Acid Motifs , Catalytic Domain , Glutathione/analogs & derivatives , Glutathione/metabolism , Humans , Leishmania infantum/enzymology , Leishmania infantum/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Models, Molecular , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Spermidine/analogs & derivatives , Spermidine/metabolism
5.
Molecules ; 25(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326257

ABSTRACT

The protozoans Leishmania and Trypanosoma, belonging to the same Trypanosomatidae family, are the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis. Overall, these infections affect millions of people worldwide, posing a serious health issue as well as socio-economical concern. Current treatments are inadequate, mainly due to poor efficacy, toxicity, and emerging resistance; therefore, there is an urgent need for new drugs.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Drug Development , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/chemistry , Oxidation-Reduction/drug effects , Trypanosoma/drug effects , Trypanosoma/metabolism , Binding Sites , Drug Design , Drug Development/methods , Leishmania/drug effects , Leishmania/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Protein Multimerization , Structure-Activity Relationship , Substrate Specificity
6.
Mol Pharm ; 15(8): 3069-3078, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29897765

ABSTRACT

Leishmaniasis, Chagas disease, and sleeping sickness affect millions of people worldwide and lead to the death of about 50 000 humans per year. These diseases are caused by the kinetoplastids Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, respectively. These parasites share many general features, including gene conservation, high amino acid identity among proteins, the presence of subcellular structures as glycosomes and the kinetoplastid, and genome architecture, that may make drug development family specific, rather than species-specific, i.e., on the basis of the inhibition of a common, conserved parasite target. However, no optimal molecular targets or broad-spectrum drugs have been identified to date to cure these diseases. Here, the LeishBox from GlaxoSmithKline high-throughput screening, a 192-molecule set of best antileishmanial compounds, based on 1.8 million compounds, was used to identify specific inhibitors of a validated Leishmania target, trypanothione reductase (TR), while analyzing in parallel the homologous human enzyme glutathione reductase (GR). We identified three specific highly potent TR inhibitors and performed docking on the TR solved structure, thereby elucidating the putative molecular basis of TR inhibition. Since TRs from kinetoplastids are well conserved, and these compounds inhibit the growth of Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, the identification of a common validated target may lead to the development of potent antikinetoplastid drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Euglenozoa Infections/drug therapy , Kinetoplastida/drug effects , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Animals , Antiprotozoal Agents/therapeutic use , Drug Discovery/methods , Euglenozoa Infections/parasitology , High-Throughput Screening Assays/methods , Humans , Kinetoplastida/genetics , Kinetoplastida/metabolism , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/isolation & purification , NADH, NADPH Oxidoreductases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Small Molecule Libraries/pharmacology
7.
ACS Infect Dis ; 8(8): 1687-1699, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35880849

ABSTRACT

Leishmania spp. are responsible for up to 1 million new cases each year. The current therapeutic arsenal against Leishmania is largely inadequate, and there is an urgent need for better drugs. Trypanothione reductase (TR) represents a druggable target since it is essential for the parasite and not shared by the human host. Here, we report the optimization of a novel class of potent and selective LiTR inhibitors realized through a concerted effort involving X-ray crystallography, synthesis, structure-activity relationship (SAR) investigation, molecular modeling, and in vitro phenotypic assays. 5-Nitrothiophene-2-carboxamides 3, 6e, and 8 were among the most potent and selective TR inhibitors identified in this study. 6e and 8 displayed leishmanicidal activity in the low micromolar range coupled to SI > 50. Our studies could pave the way for the use of TR inhibitors not only against leishmaniasis but also against other trypanosomatidae due to the structural similarity of TR enzymes.


Subject(s)
Leishmania , Leishmaniasis , Drug Discovery , Humans , Leishmaniasis/drug therapy , NADH, NADPH Oxidoreductases
8.
Biochim Biophys Acta Gen Subj ; 1865(5): 129844, 2021 05.
Article in English | MEDLINE | ID: mdl-33444728

ABSTRACT

BACKGROUND: Inteins are intervening proteins, which are known to perform protein splicing. The reaction results in the production of an intein domain and an inteinless protein, which shows no trace of the insertion. BIL2 is part of the polyubiquitin locus of Tetrahymena thermophila (BUBL), where two bacterial-intein-like (BIL) domains lacking the C + 1 nucleophile, are flanked by two independent ubiquitin-like domains (ubl4/ubl5). METHODS: We solved the X-ray structures of BIL2 in both the inactive and unprecedented, zinc-induced active, forms. Then, we characterized by mass spectrometry the BUBL splicing products in the absence and in the presence of T.thRas-GTPase. Finally, we investigated the effect of ubiquitination on T.thRas-GTPase by molecular dynamics simulations. RESULTS: The structural analysis demonstrated that zinc-induced conformational change activates protein splicing. Moreover, mass spectrometry characterization of the splicing products shed light on the possible function of BIL2, which operates as a "single-ubiquitin-dispensing-platform", allowing the conjugation, via isopeptide bond formation (K(εNH2)-C-ter), of ubl4 to either ubl5 or T.thRas-GTPase. Lastly, we demonstrated that T.thRas-GTPase ubiquitination occurs in proximity of the nucleotide binding pocket and stabilizes the protein active state. CONCLUSIONS: We demonstrated that BIL2 is activated by zinc and that protein splicing induced by this intein does not take place through classical or aminolysis mechanisms but via formation of a covalent isopeptide bond, causing the ubiquitination of endogenous substrates such as T.thRas-GTPase. GENERAL SIGNIFICANCE: In this "enzyme-free" ubiquitination mechanism the isopeptide formation, which canonically requires E1-E2-E3 enzymatic cascade and constitutes the alphabet of ubiquitin biology, is achieved in a single, concerted step without energy consumption.


Subject(s)
Protein Splicing , Tetrahymena thermophila/metabolism , Ubiquitination , Inteins , Models, Molecular , Polyubiquitin/chemistry , Polyubiquitin/metabolism , Protein Domains , Tetrahymena thermophila/chemistry , Zinc/metabolism
9.
Biochim Biophys Acta Gen Subj ; 1864(8): 129618, 2020 08.
Article in English | MEDLINE | ID: mdl-32305337

ABSTRACT

BACKGROUND: Sorcin is a calcium sensor that exerts many calcium-related functions in the cells, e.g. it regulates calcium concentration in the cytoplasm, endoplasmic reticulum (ER) and mitochondria, by interacting with calcium pumps, exchangers and channels. Albeit Sorcin is an interesting potential cancer target, little is known about its interactors upon calcium-mediated activation. Our previous study suggested that Sorcin may recognize short linear binding motifs as the crystal structure revealed a self-interaction with a GYYPGG stretch in its N-terminus, and combinatorial peptide-phage display provided support for peptide-mediated interactions. METHODS: In this study we screened for motif-based interactions between Sorcin and intrinsically disordered regions of the human proteome using proteomic peptide phage display (ProP-PD). We identified a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a potential novel interactor and confirm the interaction through biophysical and cell-based approaches, and provide structural information through molecular dynamics simulations. RESULTS: Altogether, we identify a preferred motif in the enriched pool of binders and a peptide belonging to protein phosphatase 1 regulatory subunit 3G (PPP1R3G) as a preferred ligand. CONCLUSION: Through this study we gain information on a new Sorcin binding partner and profile Sorcin's motif-based interaction. GENERAL SIGNIFICANCE: The interaction between Sorcin and PPP1R3G may suggest a close dependence between glucose homeostasis and calcium concentration in the different cell compartments, opening a completely new and interesting scenery yet to be fully disclosed.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Intrinsically Disordered Proteins/metabolism , Proteome/metabolism , HeLa Cells , Humans
10.
Cancers (Basel) ; 12(4)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268494

ABSTRACT

The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named "resistance-related" because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules.

11.
PLoS Negl Trop Dis ; 14(5): e0008339, 2020 05.
Article in English | MEDLINE | ID: mdl-32437349

ABSTRACT

Trypanothione reductase (TR) is a key enzyme that catalyzes the reduction of trypanothione, an antioxidant dithiol that protects Trypanosomatid parasites from oxidative stress induced by mammalian host defense systems. TR is considered an attractive target for the development of novel anti-parasitic agents as it is essential for parasite survival but has no close homologue in humans. We report here the identification of spiro-containing derivatives as inhibitors of TR from Trypanosoma brucei (TbTR), the parasite responsible for Human African Trypanosomiasis. The hit series, identified by high throughput screening, was shown to bind TbTR reversibly and to compete with the trypanothione (TS2) substrate. The prototype compound 1 from this series was also found to impede the growth of Trypanosoma brucei parasites in vitro. The X-ray crystal structure of TbTR in complex with compound 1 solved at 1.98 Å allowed the identification of the hydrophobic pocket where the inhibitor binds, placed close to the catalytic histidine (His 461') and lined by Trp21, Val53, Ile106, Tyr110 and Met113. This new inhibitor is specific for TbTR and no activity was detected against the structurally similar human glutathione reductase (hGR). The central spiro scaffold is known to be suitable for brain active compounds in humans thus representing an attractive starting point for the future treatment of the central nervous system stage of T. brucei infections.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Toluene/analogs & derivatives , Trypanosoma brucei brucei/drug effects , Antiprotozoal Agents/isolation & purification , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/isolation & purification , High-Throughput Screening Assays , NADH, NADPH Oxidoreductases/chemistry , Protein Binding , Protein Conformation , Toluene/isolation & purification , Toluene/pharmacology , Trypanosoma brucei brucei/enzymology
12.
Cell Death Dis ; 11(10): 861, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060591

ABSTRACT

Dysregulation of calcium signaling is emerging as a key feature in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), and targeting this process may be therapeutically beneficial. Under this perspective, it is important to study proteins that regulate calcium homeostasis in the cell. Sorcin is one of the most expressed calcium-binding proteins in the human brain; its overexpression increases endoplasmic reticulum (ER) calcium concentration and decreases ER stress in the heart and in other cellular types. Sorcin has been hypothesized to be involved in neurodegenerative diseases, since it may counteract the increased cytosolic calcium levels associated with neurodegeneration. In the present work, we show that Sorcin expression levels are strongly increased in cellular, animal, and human models of AD, PD, and HD, vs. normal cells. Sorcin partially colocalizes with RyRs in neurons and microglia cells; functional experiments with microsomes containing high amounts of RyR2 and RyR3, respectively, show that Sorcin is able to regulate these ER calcium channels. The molecular basis of the interaction of Sorcin with RyR2 and RyR3 is demonstrated by SPR. Sorcin also interacts with other ER proteins as SERCA2 and Sigma-1 receptor in a calcium-dependent fashion. We also show that Sorcin regulates ER calcium transients: Sorcin increases the velocity of ER calcium uptake (increasing SERCA activity). The data presented here demonstrate that Sorcin may represent both a novel early marker of neurodegenerative diseases and a response to cellular stress dependent on neurodegeneration.


Subject(s)
Calcium Signaling , Calcium-Binding Proteins/metabolism , Endoplasmic Reticulum Stress , Neurodegenerative Diseases/metabolism , Animals , Biomarkers, Tumor/metabolism , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/isolation & purification , Cell Line, Tumor , Cells, Cultured , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , HeLa Cells , Humans , Mice , Neurodegenerative Diseases/pathology , Neurons/metabolism , Neurons/pathology , Ryanodine Receptor Calcium Release Channel/metabolism , Transfection
13.
Eur J Med Chem ; 152: 527-541, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29758517

ABSTRACT

All currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Furthermore, some drugs are associated with the emergence of drug resistance. Thus, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases. The present work highlights the use of natural derived products, i.e. chalcones, as potential source of antileishmanial agents. Thirty-one novel chalcone compounds have been synthesized and their activity has been evaluated against promastigotes of Leishmania donovani; 16 compounds resulted active against L. donovani in a range from 3.0 to 21.5 µM, showing low toxicity against mammalian cells. Among these molecules, 6 and 16 showed good inhibitory activity on both promastigotes and intracellular amastigotes, coupled with an high selectivity index. Furthermore, compounds 6 and 16 inhibited the promastigote growth of other leishmanial species, including L. tropica, L. major and L. infantum. Finally, 6 and 16 interacted with high affinity with trypanothione reductase (TR), an essential enzyme for the leishmanial parasite and compound 6 inhibited TR with sub-micromolar potency. Thus, the effective inhibitory activity against Leishmania, the lack of toxicity on mammalian cells and the ability to block a crucial parasite's enzyme, highlight the potential for compound 6 to be optimized as novel drug candidate against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Chalcone/pharmacology , Leishmania/drug effects , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cells, Cultured , Chalcone/chemical synthesis , Chalcone/chemistry , Dose-Response Relationship, Drug , Humans , Leishmania/enzymology , Leishmania/growth & development , Macrophages/drug effects , Molecular Docking Simulation , Molecular Structure , NADH, NADPH Oxidoreductases/metabolism , Parasitic Sensitivity Tests , Structure-Activity Relationship , THP-1 Cells
14.
J Inorg Biochem ; 169: 86-96, 2017 04.
Article in English | MEDLINE | ID: mdl-28161681

ABSTRACT

The spectroscopic and functional properties of the single Met80Ala and double Tyr67His/Met80Ala mutants of human cytochrome c have been investigated in their ferric and ferrous forms, and in the presence of different ligands, in order to clarify the reciprocal effect of these two residues in regulating the access of exogenous molecules into the heme pocket. In the ferric state, both mutants display an aquo high spin and a low spin species. The latter corresponds to an OH- ligand in Met80Ala but to a His in the double mutant. The existence of these two species is also reflected in the functional behavior of the mutants. The observation that (i) a significant peroxidase activity is present in the Met80Ala mutants, (ii) the substitution of the Tyr67 by His leads to only a slight increase of the peroxidase activity in the Tyr67His/Met80Ala double mutant with respect to wild type, while the Tyr67His mutant behaves as wild type, as previously reported, suggests that the peroxidase activity of cytochrome c is linked to an overall conformational change of the heme pocket and not only to the disappearance of the Fe-Met80 bond. Therefore, in human cytochrome c there is an interplay between the two residues at positions 67 and 80 that affects the conformation of the distal side of the heme pocket, and thus the sixth coordination of the heme.


Subject(s)
Cytochromes c/chemistry , Cytochromes c/metabolism , Alanine/chemistry , Alanine/genetics , Alanine/metabolism , Circular Dichroism , Cytochromes c/genetics , Heme/chemistry , Heme/metabolism , Histamine/chemistry , Histamine/genetics , Histamine/metabolism , Humans , Kinetics , Methionine/chemistry , Methionine/genetics , Methionine/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tyrosine/chemistry , Tyrosine/genetics , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL