ABSTRACT
MHC class I plays a critical role in the immune defense against viruses and tumors by presenting antigens to CD8 T cells. An NLR protein, class II transactivator (CIITA), is a key regulator of MHC class II gene expression that associates and cooperates with transcription factors in the MHC class II promoter. Although CIITA also transactivates MHC class I gene promoters, loss of CIITA in humans and mice results in the severe reduction of only MHC class II expression, suggesting that additional mechanisms regulate the expression of MHC class I. Here, we identify another member of the NLR protein family, NLRC5, as a transcriptional regulator of MHC class I genes. Similar to CIITA, NLRC5 is an IFN-gamma-inducible nuclear protein, and the expression of NLRC5 resulted in enhanced MHC class I expression in lymphoid as well as epithelial cell lines. Using chromatin immunoprecipitation and reporter gene assays, we show that NLRC5 associates with and activates the promoters of MHC class I genes. Furthermore, we show that the IFN-gamma-induced up-regulation of MHC class I requires NLRC5, because knockdown of NLRC5 specifically impaired the expression of MHC class I. In addition to MHC class I genes, NLRC5 also induced the expression of beta2-microglobulin, transporter associated with antigen processing, and large multifunctional protease, which are essential for MHC class I antigen presentation. Our results suggest that NLRC5 is a transcriptional regulator, orchestrating the concerted expression of critical components in the MHC class I pathway.
Subject(s)
Gene Expression Regulation , Genes, MHC Class I , Intracellular Signaling Peptides and Proteins/metabolism , Transcription, Genetic , Active Transport, Cell Nucleus , Amino Acid Sequence , Cell Line , Cell Nucleus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Molecular Sequence Data , Phylogeny , Promoter Regions, Genetic , Protein Binding , RNA, Small Interfering/geneticsABSTRACT
Ferroptosis is a death program executed via selective oxidation of arachidonic acid-phosphatidylethanolamines (AA-PE) by 15-lipoxygenases. In mammalian cells and tissues, ferroptosis has been pathogenically associated with brain, kidney, and liver injury/diseases. We discovered that a prokaryotic bacterium, Pseudomonas aeruginosa, that does not contain AA-PE can express lipoxygenase (pLoxA), oxidize host AA-PE to 15-hydroperoxy-AA-PE (15-HOO-AA-PE), and trigger ferroptosis in human bronchial epithelial cells. Induction of ferroptosis by clinical P. aeruginosa isolates from patients with persistent lower respiratory tract infections was dependent on the level and enzymatic activity of pLoxA. Redox phospholipidomics revealed elevated levels of oxidized AA-PE in airway tissues from patients with cystic fibrosis (CF) but not with emphysema or CF without P. aeruginosa. We believe that the evolutionarily conserved mechanism of pLoxA-driven ferroptosis may represent a potential therapeutic target against P. aeruginosa-associated diseases such as CF and persistent lower respiratory tract infections.