Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Chem Biol ; 17(6): 641-652, 2021 06.
Article in English | MEDLINE | ID: mdl-34035514

ABSTRACT

Multicellular organisms depend on physical cell-cell interactions to control physiological processes such as tissue formation, neurotransmission and immune response. These intercellular binding events can be both highly dynamic in their duration and complex in their composition, involving the participation of many different surface and intracellular biomolecules. Untangling the intricacy of these interactions and the signaling pathways they modulate has greatly improved insight into the biological processes that ensue upon cell-cell engagement and has led to the development of protein- and cell-based therapeutics. The importance of monitoring physical cell-cell interactions has inspired the development of several emerging approaches that effectively interrogate cell-cell interfaces with molecular-level detail. Specifically, the merging of chemistry- and biology-based technologies to deconstruct the complexity of cell-cell interactions has provided new avenues for understanding cell-cell interaction biology and opened opportunities for therapeutic development.


Subject(s)
Cell Biology , Cell Communication/physiology , Animals , Cell Communication/drug effects , Humans , Signal Transduction/drug effects , Signal Transduction/physiology
2.
Infect Immun ; 90(8): e0020522, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35913173

ABSTRACT

The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.


Subject(s)
Toxoplasma , Toxoplasmosis , Basigin , Escherichia coli , Humans , Proteomics
3.
Org Biomol Chem ; 21(1): 98-106, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36477737

ABSTRACT

Receptor-ligand interactions play essential signaling roles within intercellular contact regions. This is particularly important within the context of the immune synapse where protein communication at the surface of physically interacting T cells and antigen-presenting cells regulate downstream immune signaling responses. To identify protein microenvironments within immunological synapses, we combined a flavin-dependent photocatalytic labeling strategy with quantitative mass spectrometry-based proteomics. Using α-PD-L1 or α-PD-1 single-domain antibody (VHH)-based photocatalyst targeting modalities, we profiled protein microenvironments within the intercellular region of an immune synapse-forming co-culture system. In addition to enrichment of both PD-L1 and PD-1 with either targeting modality, we also observed enrichment of both known immune synapse residing receptor-ligand pairs and surface proteins, as well as previously unknown synapse residing proteins.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Ligands , Proteomics , Catalysis
4.
Proteomics ; 17(6)2017 03.
Article in English | MEDLINE | ID: mdl-28044432

ABSTRACT

This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction, and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases.  In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin.  Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson's disease.


Subject(s)
Disease , Disulfides/chemistry , Disulfides/metabolism , Allosteric Regulation , Animals , Humans , Models, Biological , Oxidation-Reduction , Proteomics
5.
Cell Chem Biol ; 30(10): 1313-1322.e7, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37499664

ABSTRACT

Identifying virus-host interactions on the cell surface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the causative agent of the COVID-19 disease, uses ACE2 as a receptor to enter cells. Yet the full repertoire of cell surface proteins that contribute to viral entry is unknown. We developed a photocatalyst-based viral-host protein microenvironment mapping platform (ViraMap) to probe the molecular neighborhood of the SARS-CoV-2 spike protein on the human cell surface. Application of ViraMap to ACE2-expressing cells captured ACE2, the established co-receptor NRP1, and several novel cell surface proteins. We systematically analyzed the relevance of these candidate proteins to SARS-CoV-2 entry by knockdown and overexpression approaches in pseudovirus and authentic infection models and identified PTGFRN and EFNB1 as bona fide viral entry factors. Our results highlight additional host targets that participate in SARS-CoV-2 infection and showcase ViraMap as a powerful platform for defining viral interactions on the cell surface.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Spike Glycoprotein, Coronavirus , Viral Proteins/metabolism , Protein Binding
6.
ACS Chem Biol ; 17(8): 2304-2314, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35939534

ABSTRACT

Receptor tyrosine kinases are involved in essential signaling roles that impact cell growth, differentiation, and proliferation. The overexpression or mutation of these proteins can lead to aberrant signaling that has been directly linked to a number of diseases including cancer cell formation and progression. This has led to intense clinical focus on modulating RTK activity through direct targeting of signaling activity or cell types harboring aberrant RTK behavior. In particular, epidermal growth factor receptor (EGFR) has attracted intense clinical attention due to the impact of inhibiting this RTK on tumor growth. However, mutations incurred through targeting EGFR have led to therapeutic resistance that involves not only direct mutations to the EGFR protein but also the involvement of other RTKs, such as c-MET, that can overcome therapeutic-based EGFR inhibition effects. This has, not surprisingly, led to co-targeting strategies of RTKs such as EGFR and c-MET to overcome resistance mechanisms. While the ability to co-target these proteins has led to success in the clinic, a more comprehensive understanding of their proximal environments, particularly in the context of therapeutic modalities, could further enhance both our understanding of their signaling biology and provide additional avenues for targeting these surface proteins. Thus, to investigate EGFR and c-MET protein microenvironments, we utilized our recently developed iridium photocatalyst-based microenvironment mapping technology to catalog EGFR and c-MET surface environments on non-small cell lung cancer cell lines. Through this approach, we enriched EGFR and c-MET from the cell surface and identified known EGFR and c-MET associators as well as previously unidentified proximal proteins.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Tumor Microenvironment
7.
Life (Basel) ; 11(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803212

ABSTRACT

The host cell invasion process of apicomplexan parasites like Toxoplasma gondii is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca2+) binding archetype, although this feature is optional in extant C2 domains. DOC2 domains provide combinatorial power to the C2 domain, which is further enhanced in ferlins that harbor 5-7 C2 domains. Ca2+ conditionally engages the C2 domain with lipids, membranes, and/or proteins to facilitating vesicular trafficking and membrane fusion. The widely conserved T. gondii ferlins 1 (FER1) and 2 (FER2) are responsible for microneme and rhoptry exocytosis, respectively, whereas an unconventional TgDOC2 is essential for microneme exocytosis. The general role of ferlins in endolysosmal pathways is consistent with the repurposed apicomplexan endosomal pathways in lineage specific secretory organelles. Ferlins can facilitate membrane fusion without SNAREs, again pertinent to the Apicomplexa. How temporal raises in Ca2+ combined with spatiotemporally available membrane lipids and post-translational modifications mesh to facilitate sequential exocytosis events is discussed. In addition, new data on cross-talk between secretion events together with the identification of a new microneme protein, MIC21, is presented.

8.
ACS Chem Biol ; 15(2): 543-553, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31899610

ABSTRACT

The endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family. Here, we establish chemoproteomic platforms to identify oxidized and reduced cysteine residues within the ER. Subcellular fractionation methods were utilized to enrich for the ER and significantly enhance the coverage of ER-localized cysteine residues. Reactive-cysteine profiling ranked ∼900 secretory pathway cysteines by reactivity with an iodoacetamide-alkyne probe, revealing functional cysteines annotated to participate in disulfide bonds, or S-palmitoylation sites within proteins. Through application of a variation of the OxICAT protocol for quantifying cysteine oxidation, the percentages of oxidation for each of ∼700 ER-localized cysteines were calculated. Lastly, perturbation of ER function, through chemical induction of ER stress, was used to investigate the effect of initiation of the unfolded protein response (UPR) on ER-localized cysteine oxidation. Together, these studies establish a platform for identifying reactive and functional cysteine residues on proteins within the secretory pathway as well as for interrogating the effects of diverse cellular stresses on ER-localized cysteine oxidation.


Subject(s)
Cysteine/metabolism , Endoplasmic Reticulum/metabolism , Proteome/metabolism , Alkynes/chemistry , Cell Line, Tumor , Cysteine/chemistry , Humans , Indicators and Reagents/chemistry , Iodoacetamide/chemistry , Lipoylation , Oxidation-Reduction , Proteome/chemistry , Proteomics , Thapsigargin/pharmacology , Tunicamycin/pharmacology , Unfolded Protein Response/drug effects
9.
Curr Opin Chem Biol ; 48: 96-105, 2019 02.
Article in English | MEDLINE | ID: mdl-30508703

ABSTRACT

Cysteine residues are concentrated at key functional sites within proteins, performing diverse roles in metal binding, catalysis, and redox chemistry. Chemoproteomic platforms to interrogate the reactive cysteinome have developed significantly over the past 10 years, resulting in a greater understanding of cysteine functionality, modification, and druggability. Recently, chemoproteomic methods to examine reactive cysteine residues from specific subcellular organelles have provided significantly improved proteome coverage and highlights the unique functionalities of cysteine residues mediated by cellular localization. Here, the diverse physicochemical properties of the mammalian subcellular organelles are explored in the context of their effects on cysteine reactivity. The unique functions of cysteine residues found in the mitochondria and endoplasmic reticulum are highlighted, together with an overview into chemoproteomic platforms employed to investigate cysteine reactivity in subcellular organelles.


Subject(s)
Cysteine/metabolism , Organelles/metabolism , Proteins/metabolism , Animals , Cysteine/analysis , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/chemistry , Mitochondria/metabolism , Organelles/chemistry , Oxidation-Reduction , Proteins/analysis , Proteomics/methods
10.
Sci Immunol ; 2(12)2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28783661

ABSTRACT

Many citrullinated proteins are known autoantigens in rheumatoid arthritis, a disease mediated by inflammatory cytokines, such as tumor necrosis factor-α (TNFα). Citrullinated proteins are generated by converting peptidylarginine to peptidylcitrulline, a process catalyzed by the peptidylarginine deiminases (PADs), including PAD1 to PAD4 and PAD6. Several major risk factors for rheumatoid arthritis are associated with heightened citrullination. However, the physiological role of citrullination in immune cells is poorly understood. We report that suppression of PAD activity attenuates Toll-like receptor-induced expression of interleukin-1ß (IL-1ß) and TNFα by neutrophils in vivo and in vitro but not their global transcription activity. Mechanistically, PAD4 directly citrullinates nuclear factor κB (NF-κB) p65 and enhances the interaction of p65 with importin α3, which brings p65 into the nucleus. The citrullination-enhanced interaction of p65 with importin α3 and its nuclear translocation and transcriptional activity can be attributed to citrullination of four arginine residues located in the Rel homology domain of p65. Furthermore, a rheumatoid arthritis-prone variant of PAD4, carrying three missense mutations, is more efficient in interacting with p65 and enhancing NF-κB activity. Together, these data not only demonstrate a critical role of citrullination in an NF-κB-dependent expression of IL-1ß and TNFα but also provide a molecular mechanism by which heightened citrullination propagates inflammation in rheumatoid arthritis. Accordingly, attenuating p65-mediated production of IL-1ß and TNFα by blocking the citrullination of p65 has great therapeutic potential in rheumatoid arthritis.

11.
Anal Chim Acta ; 891: 284-90, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26388388

ABSTRACT

Inhibitors of Rho-associated protein kinase (ROCK) enzymatic activity have been shown to reduce the invasive phenotype observed in metastatic hepatocellular carcinoma (HCC). We describe the design, synthesis, and evaluation of a direct probe for ROCK activity utilizing a phosphorylation-sensitive sulfonamido-oxine fluorophore, termed Sox. The Sox fluorophore undergoes an increase in fluorescence upon phosphorylation of a proximal amino acid via chelation-enhanced fluorescence (CHEF, ex. = 360 nm and em. = 485 nm), allowing for the direct visualization of the rate of phosphate addition to a peptide substrate over time. Our optimal probe design, ROCK-S1, is capable of sensitively reporting ROCK activity with a limit of detection of 10 pM and a high degree of reproducibility (Z'-factor = 0.6 at 100 pM ROCK2). As a proof-of-principle for high-throughput screening (HTS) we demonstrate the ability to rapidly assess the efficacy of a 78 member, small molecule library against ROCK2 using a robotics platform. We identify two previously unreported ROCK2 inhibitor scaffolds, PHA665752 and IKK16, with IC50 values of 3.6 µM and 247 nM respectively. Lastly, we define conditions for selectively monitoring ROCK activity in the presence of potential off-target enzymes (PKCα, PKA, and PAK) with similar substrate specificities.


Subject(s)
Enzyme Assays/methods , Fluorescent Dyes/metabolism , Peptides/metabolism , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism , Amino Acid Sequence , Drug Evaluation, Preclinical/methods , Fluorescence , Fluorescent Dyes/chemistry , Humans , Molecular Sequence Data , Peptides/chemistry , Phosphorylation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Spectrometry, Fluorescence/methods , Substrate Specificity , rho-Associated Kinases/analysis
SELECTION OF CITATIONS
SEARCH DETAIL