Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Antimicrob Agents Chemother ; 53(1): 235-41, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18838592

ABSTRACT

Fluoroquinolone MICs are increased through the acquisition of chromosomal mutations in the genes encoding gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE), increased levels of the multidrug efflux pump AcrAB, and the plasmid-borne genes aac(6')-Ib-cr and the qnr variants in Escherichia coli. In the accompanying report, we found that ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant E. coli clinical isolates were very high and widely varied (L. Becnel Boyd, M. J. Maynard, S. K. Morgan-Linnell, L. B. Horton, R. Sucgang, R. J. Hamill, J. Rojo Jimenez, J. Versalovic, D. Steffen, and L. Zechiedrich, Antimicrob. Agents Chemother. 53:229-234, 2009). Here, we sequenced gyrA, gyrB, parC, and parE; screened for aac(6')-Ib-cr and qnrA; and quantified AcrA levels in E. coli isolates for which patient sex, age, location, and site of infection were known. We found that (i) all fluoroquinolone-resistant isolates had gyrA mutations; (ii) approximately 85% of gyrA mutants also had parC mutations; (iii) the ciprofloxacin and norfloxacin MICs for isolates harboring aac(6')-Ib-cr ( approximately 23%) were significantly higher, but the gatifloxacin and levofloxacin MICs were not; (iv) no isolate had qnrA; and (v) approximately 33% of the fluoroquinolone-resistant isolates had increased AcrA levels. Increased AcrA correlated with nonsusceptibility to the fluoroquinolones but did not correlate with nonsusceptibility to any other antimicrobial agents reported from hospital antibiograms. Known mechanisms accounted for the fluoroquinolone MICs of 50 to 70% of the isolates; the remaining included isolates for which the MICs were up to 1,500-fold higher than expected. Thus, additional, unknown fluoroquinolone resistance mechanisms must be present in some clinical isolates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Fluoroquinolones/pharmacology , Ciprofloxacin/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Escherichia coli/isolation & purification , Gatifloxacin , Humans , Levofloxacin , Microbial Sensitivity Tests , Mutation , Norfloxacin/pharmacology , Ofloxacin/pharmacology
2.
Antimicrob Agents Chemother ; 53(1): 229-34, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18838594

ABSTRACT

Fluoroquinolones are some of the most prescribed antibiotics in the United States. Previously, we and others showed that the fluoroquinolones exhibit a class effect with regard to the CLSI-established breakpoints for resistance, such that decreased susceptibility (i.e., an increased MIC) to one fluoroquinolone means a simultaneously decreased susceptibility to all. For defined strains, however, clear differences exist in the pharmacodynamic properties of each fluoroquinolone and the extent to which resistance-associated genotypes affect the MICs of each fluoroquinolone. In a pilot study of 920 clinical Escherichia coli isolates, we uncovered tremendous variation in norfloxacin MICs. The MICs for all of the fluoroquinolone-resistant isolates exceeded the resistance breakpoint, reaching 1,000 microg/ml. Approximately 25% of the isolates (n = 214), representing the full range of resistant norfloxacin MICs, were selected for the simultaneous determinations of ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs. We found that (i) great MIC variation existed for all four fluoroquinolones, (ii) the ciprofloxacin and levofloxacin MICs of >90% of the fluoroquinolone-resistant isolates were higher than the resistance breakpoints, (iii) ciprofloxacin and levofloxacin MICs were distributed into two distinct groups, (iv) the MICs of two drug pairs (ciprofloxacin and norfloxacin by Kendall's Tau-b test and gatifloxacin and levofloxacin by paired t test) were similar with statistical significance but were different from each other, and (v) approximately 2% of isolates had unprecedented fluoroquinolone MIC relationships. Thus, although the fluoroquinolones can be considered equivalent with regard to clinical susceptibility or resistance, fluoroquinolone MICs differ dramatically for fluoroquinolone-resistant clinical isolates, likely because of differences in drug structure.


Subject(s)
Ciprofloxacin/pharmacology , Escherichia coli/drug effects , Fluoroquinolones/pharmacology , Levofloxacin , Norfloxacin/pharmacology , Ofloxacin/pharmacology , Drug Resistance, Bacterial , Escherichia coli/isolation & purification , Gatifloxacin , Microbial Sensitivity Tests , United States
SELECTION OF CITATIONS
SEARCH DETAIL