Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Breast Dis ; 41(1): 471-480, 2022.
Article in English | MEDLINE | ID: mdl-36641654

ABSTRACT

OBJECTIVE: In this study, the profiling of the expression of major histocompatibility complex (MHC) class I-related chain A and B (MICA/B) in human breast cancer tumor tissue, saliva, and urine samples of breast cancer patients and control is carried out. MICA/B is ligand of NKG2D receptor expressed on malignant cells. The release of MICA/B from tumor tissue comprises an immune escape mechanism that impairs antitumor immunity. Based on this literature we explored the potential of soluble MICA (sMICA) as a marker in breast cancer (BC). METHODS: The expression was profiled by using immunohistochemistry (MICA/B), western blot (MICA/B) and ELISA (MICA). RESULTS: The optical density of western blot of MICA/B in different stages of BC illustrated significant difference as per one way analysis of variance and significant difference with stage III and IV by Dunnett's multiple comparisons test respectively. Analysis of sMICA in serum, saliva and urine of BC patients revealed significantly higher levels (median 41.0 ± 4.1 pg/ml in pre-treatment sera, 181.9 ± 1.6 pg/ml in saliva and 90.7 ± 1.7 pg/ml in urine) than in control (median <1.2 pg/ml). The elevated levels of sMICA were related to the cancer stage. CONCLUSIONS: The elevated levels of sMICA were observed in patients with well differentiated cancer while the poor expression of sMICA was observed in patients with poorly differentiated tumors. Tumor immunity is impaired by the release of MICA in the biofluids and may be useful for detection and diagnosis of the stage of BC.


Subject(s)
Breast Neoplasms , Humans , Female , Down-Regulation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Neoplasm Staging , Immunohistochemistry
2.
Biochem Biophys Rep ; 13: 63-72, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29349357

ABSTRACT

Recently lots of efforts have been taken to develop superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications. So it is utmost necessary to have in depth knowledge of the toxicity occurred by this material. This article is designed in such way that it covers all the associated toxicity issues of SPIONs. It mainly emphasis on toxicity occurred at different levels including cellular alterations in the form of damage to nucleic acids due to oxidative stress and altered cellular response. In addition focus is been devoted for in vitro and in vivo toxicity of SPIONs, so that a better therapeutics can be designed. At the end the time dependent nature of toxicity and its ultimate faith inside the body is being discussed.

SELECTION OF CITATIONS
SEARCH DETAIL