Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Clin Infect Dis ; 79(1): 96-107, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38466720

ABSTRACT

BACKGROUND: There are limited data on whether hybrid immunity differs by count and order of immunity-conferring events (infection with severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] or vaccination against coronavirus disease 2019 [COVID-19]). From a multi-site cohort of frontline workers, we examined the heterogeneity of the effect of hybrid immunity on SARS-CoV-2 antibody levels. METHODS: Exposures included event count and event order, categorized into 7 permutations. Outcome was level of serum antibodies against receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein (total RBD-binding immunoglobulin). Means were examined up to 365 days after each of the first to seventh events. RESULTS: Analysis included 5793 participants measured from 7 August 2020 to 15 April 2023. Hybrid immunity from infection before 1 or 2 vaccine doses elicited modestly superior antibody responses after the second and third events (compared with infections or vaccine doses alone). This superiority was not repeated after additional events. Among adults infected before vaccination, adjusted geometric mean ratios (95% confidence interval [CI]) of anti-RBD early response (versus vaccinated only) were 1.23 (1.14-1.33), 1.09 (1.03-1.14), 0.87 (.81-.94), and 0.99 (.85-1.15) after the second to fifth events, respectively. Post-vaccination infections elicited superior responses; adjusted geometric mean ratios (95% CI) of anti-RBD early response (versus vaccinated only) were 0.93 (.75-1.17), 1.11 (1.06-1.16), 1.17 (1.11-1.24), and 1.20 (1.07-1.34) after the second to fifth events, respectively. CONCLUSIONS: Evidence of heterogeneity in antibody levels by permutations of infection and vaccination history could inform COVID-19 vaccination policy.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/epidemiology , SARS-CoV-2/immunology , Prospective Studies , Male , Adult , Female , Spike Glycoprotein, Coronavirus/immunology , Middle Aged , COVID-19 Vaccines/immunology , Vaccination
2.
N Engl J Med ; 385(4): 320-329, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34192428

ABSTRACT

BACKGROUND: Information is limited regarding the effectiveness of the two-dose messenger RNA (mRNA) vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) in preventing infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and in attenuating coronavirus disease 2019 (Covid-19) when administered in real-world conditions. METHODS: We conducted a prospective cohort study involving 3975 health care personnel, first responders, and other essential and frontline workers. From December 14, 2020, to April 10, 2021, the participants completed weekly SARS-CoV-2 testing by providing mid-turbinate nasal swabs for qualitative and quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) analysis. The formula for calculating vaccine effectiveness was 100% × (1 - hazard ratio for SARS-CoV-2 infection in vaccinated vs. unvaccinated participants), with adjustments for the propensity to be vaccinated, study site, occupation, and local viral circulation. RESULTS: SARS-CoV-2 was detected in 204 participants (5%), of whom 5 were fully vaccinated (≥14 days after dose 2), 11 partially vaccinated (≥14 days after dose 1 and <14 days after dose 2), and 156 unvaccinated; the 32 participants with indeterminate vaccination status (<14 days after dose 1) were excluded. Adjusted vaccine effectiveness was 91% (95% confidence interval [CI], 76 to 97) with full vaccination and 81% (95% CI, 64 to 90) with partial vaccination. Among participants with SARS-CoV-2 infection, the mean viral RNA load was 40% lower (95% CI, 16 to 57) in partially or fully vaccinated participants than in unvaccinated participants. In addition, the risk of febrile symptoms was 58% lower (relative risk, 0.42; 95% CI, 0.18 to 0.98) and the duration of illness was shorter, with 2.3 fewer days spent sick in bed (95% CI, 0.8 to 3.7). CONCLUSIONS: Authorized mRNA vaccines were highly effective among working-age adults in preventing SARS-CoV-2 infection when administered in real-world conditions, and the vaccines attenuated the viral RNA load, risk of febrile symptoms, and duration of illness among those who had breakthrough infection despite vaccination. (Funded by the National Center for Immunization and Respiratory Diseases and the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Viral Load , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/immunology , Carrier State/diagnosis , Carrier State/prevention & control , Emergency Responders , Female , Health Personnel , Humans , Male , Middle Aged , Patient Acuity , Prospective Studies , SARS-CoV-2/isolation & purification , Treatment Outcome , Young Adult
3.
J Immunol ; 208(11): 2461-2465, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35562119

ABSTRACT

Several studies have demonstrated that the SARS-CoV-2 variant-of-concern B.1.1.529 (Omicron) exhibits a high degree of escape from Ab neutralization. Therefore, it is critical to determine how well the second line of adaptive immunity, T cell memory, performs against Omicron. To this purpose, we analyzed a human cohort (n = 327 subjects) of two- or three-dose mRNA vaccine recipients and COVID-19 postinfection subjects. We report that T cell responses against Omicron were largely preserved. IFN-γ-producing T cell responses remained equivalent to the response against the ancestral strain (WA1/2020), with some (∼20%) loss in IL-2 single or IL-2+IFN-γ+ polyfunctional responses. Three-dose vaccinated participants had similar responses to Omicron relative to post-COVID-19 participants and exhibited responses significantly higher than those receiving two mRNA vaccine doses. These results provide further evidence that a three-dose vaccine regimen benefits the induction of optimal functional T cell immune memory.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , T-Lymphocytes , mRNA Vaccines , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Interleukin-2/genetics , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic , mRNA Vaccines/immunology
4.
Clin Infect Dis ; 76(10): 1822-1831, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36578137

ABSTRACT

BACKGROUND: Data on antibody kinetics are limited among individuals previously infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). From a cohort of healthcare personnel and other frontline workers in 6 US states, we assessed antibody waning after messenger RNA (mRNA) dose 2 and response to dose 3 according to SARS-CoV-2 infection history. METHODS: Participants submitted sera every 3 months, after SARS-CoV-2 infection, and after each mRNA vaccine dose. Sera were tested for antibodies and reported as area under the serial dilution curve (AUC). Changes in AUC values over time were compared using a linear mixed model. RESULTS: Analysis included 388 participants who received dose 3 by November 2021. There were 3 comparison groups: vaccine only with no known prior SARS-CoV-2 infection (n = 224); infection prior to dose 1 (n = 123); and infection after dose 2 and before dose 3 (n = 41). The interval from dose 2 and dose 3 was approximately 8 months. After dose 3, antibody levels rose 2.5-fold (95% confidence interval [CI] = 2.2-3.0) in group 2 and 2.9-fold (95% CI = 2.6-3.3) in group 1. Those infected within 90 days before dose 3 (and median 233 days [interquartile range, 213-246] after dose 2) did not increase significantly after dose 3. CONCLUSIONS: A third dose of mRNA vaccine typically elicited a robust humoral immune response among those with primary vaccination regardless of SARS-CoV-2 infection >3 months prior to boosting. Those with infection <3 months prior to boosting did not have a significant increase in antibody concentrations in response to a booster.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , RNA, Messenger , mRNA Vaccines , Antibodies, Viral
5.
Environ Res ; 239(Pt 1): 117297, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37816422

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous throughout the United States. Previous studies have shown PFAS exposure to be associated with a reduced immune response. However, the relationship between serum PFAS and antibody levels following SARS-CoV-2 infection or COVID-19 vaccination has not been examined. We examined differences in peak immune response and the longitudinal decline of antibodies following SARS-CoV-2 infection and COVID-19 vaccination by serum PFAS levels in a cohort of essential workers in the United States. We measured serum antibodies using an in-house semi-quantitative enzyme-linked immunosorbent assay (ELISA). Two cohorts contributed blood samples following SARS-CoV-2 infection or COVID-19 vaccination. We used linear mixed regression models, adjusting for age, race/ethnicity, gender, presence of chronic conditions, location, and occupation, to estimate differences in immune response with respect to serum PFAS levels. Our study populations included 153 unvaccinated participants that contributed 316 blood draws over a 14-month period following infection, and 860 participants and 2451 blood draws over a 12-month period following vaccination. Higher perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) concentrations were associated with a lower peak antibody response after infection (p = 0.009, 0.031, 0.015). Higher PFOS, perfluorooctanoic acid (PFOA), PFHxS, and PFNA concentrations were associated with slower declines in antibodies over time after infection (p = 0.003, 0.014, 0.026, 0.025). PFOA, PFOS, PFHxS, and PFNA serum concentrations prior to vaccination were not associated with differences in peak antibody response after vaccination or with differences in decline of antibodies over time after vaccination. These results suggest that elevated PFAS may impede potential immune response to SARS-CoV-2 infection by blunting peak antibody levels following infection; the same finding was not observed for immune response to vaccination.


Subject(s)
Alkanesulfonic Acids , COVID-19 , Environmental Pollutants , Fluorocarbons , Humans , United States , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies
6.
Am J Ind Med ; 66(5): 411-423, 2023 05.
Article in English | MEDLINE | ID: mdl-35864570

ABSTRACT

BACKGROUND: Firefighters have occupational and environmental exposures to per- and polyfluoroalkyl substances (PFAS). The goal of this study was to compare serum PFAS concentrations across multiple United States fire departments to National Health and Nutrition Examination Survey (NHANES) participants. METHODS: Nine serum PFAS were compared in 290 firefighters from four municipal fire departments (coded A-D) and three NHANES participants matched to each firefighter on sex, ethnicity, age, and PFAS collection year. Only Departments A and C had sufficient women study participants (25 and six, respectively) to compare with NHANES. RESULTS: In male firefighters compared with NHANES, geometric mean perfluorohexane sulfonate (PFHxS) was elevated in Departments A-C, sum of branched perfluoromethylheptane sulfonate isomers (Sm-PFOS) was elevated in all four departments, linear perfluorooctane sulfonate (n-PFOS) was elevated in Departments B and C, linear perfluorooctanoate (n-PFOA) was elevated in Departments B-D, and perfluorononanoate (PFNA) was elevated in Departments B-D, but lower in A. In male firefighters compared with NHANES, perfluoroundecanoate (PFUnDA) was more frequently detected in Departments B and D, and 2-(N-methyl-perfluorooctane sulfonamido) acetate (MeFOSAA) was less frequently detected in Departments B-D. In female firefighters compared with NHANES, PFHxS and Sm-PFOS concentrations were elevated in Departments A and C. Other PFAS concentrations were elevated and/or reduced in only one department or not significantly different from NHANES in any department. CONCLUSIONS: Serum PFHxS, Sm-PFOS, n-PFOS, n-PFOA, and PFNA concentrations were increased in at least two of four fire departments in comparison to NHANES.


Subject(s)
Environmental Pollutants , Fluorocarbons , Humans , Male , Female , United States , Nutrition Surveys , Fluorocarbons/analysis , Environmental Exposure , Alkanesulfonates
7.
Clin Infect Dis ; 75(1): e827-e837, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34928334

ABSTRACT

BACKGROUND: Data on the development of neutralizing antibodies (nAbs) against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with mRNA COVID-19 vaccines are limited. METHODS: From a prospective cohort of 3975 adult essential and frontline workers tested weekly from August 2020 to March 2021 for SARS-CoV-2 infection by reverse transcription-polymerase chain reaction assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum-neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t tests and linear mixed-effects models. RESULTS: Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed nAbs with a GMT of 1003 (95% confidence interval, 766-1315). Among 139 previously uninfected participants, 138 (99%) developed nAbs after mRNA vaccine dose 2 with a GMT of 3257 (2596-4052). GMT was higher among those receiving mRNA-1273 vaccine (GMT, 4698; 3186-6926) compared with BNT162b2 vaccine (GMT, 2309; 1825-2919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21 655 (14 766-31 756) after mRNA vaccine dose 1, without further increase after dose 2. CONCLUSIONS: A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAbs to SARS-CoV-2 than after 1 dose of vaccine or SARS-CoV-2 infection alone. nAb response also differed by mRNA vaccine product.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Neutralization Tests , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
8.
MMWR Morb Mortal Wkly Rep ; 71(11): 422-428, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35298453

ABSTRACT

The BNT162b2 (Pfizer-BioNTech) mRNA COVID-19 vaccine was recommended by CDC's Advisory Committee on Immunization Practices for persons aged 12-15 years (referred to as adolescents in this report) on May 12, 2021, and for children aged 5-11 years on November 2, 2021 (1-4). Real-world data on vaccine effectiveness (VE) in these age groups are needed, especially because when the B.1.1.529 (Omicron) variant became predominant in the United States in December 2021, early investigations of VE demonstrated a decline in protection against symptomatic infection for adolescents aged 12-15 years and adults* (5). The PROTECT† prospective cohort of 1,364 children and adolescents aged 5-15 years was tested weekly for SARS-CoV-2, irrespective of symptoms, and upon COVID-19-associated illness during July 25, 2021-February 12, 2022. Among unvaccinated participants (i.e., those who had received no COVID-19 vaccine doses) with any laboratory-confirmed SARS-CoV-2 infection, those with B.1.617.2 (Delta) variant infections were more likely to report COVID-19 symptoms (66%) than were those with Omicron infections (49%). Among fully vaccinated children aged 5-11 years, VE against any symptomatic and asymptomatic Omicron infection 14-82 days (the longest interval after dose 2 in this age group) after receipt of dose 2 of the Pfizer-BioNTech vaccine was 31% (95% CI = 9%-48%), adjusted for sociodemographic characteristics, health information, frequency of social contact, mask use, location, and local virus circulation. Among adolescents aged 12-15 years, adjusted VE 14-149 days after dose 2 was 87% (95% CI = 49%-97%) against symptomatic and asymptomatic Delta infection and 59% (95% CI = 22%-79%) against Omicron infection. Fully vaccinated participants with Omicron infection spent an average of one half day less sick in bed than did unvaccinated participants with Omicron infection. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.


Subject(s)
BNT162 Vaccine/administration & dosage , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Prospective Studies , United States
9.
Occup Environ Med ; 79(10): 656-663, 2022 10.
Article in English | MEDLINE | ID: mdl-35332072

ABSTRACT

OBJECTIVES: Firefighters face exposures associated with adverse health outcomes including risk for multiple cancers. DNA methylation, one type of epigenetic regulation, provides a potential mechanism linking occupational hazards to adverse health outcomes. We hypothesised that DNA methylation profiles would change in firefighters after starting their service and that these patterns would be associated with occupational exposures (cumulative fire-hours and fire-runs). METHODS: We profiled DNA methylation with the Infinium MethylationEPIC in blood leucocytes at two time points in non-smoking new recruits: prior to live fire training and 20-37 months later. Linear mixed effects models adjusted for potential confounders were used to identify differentially methylated CpG sites over time using data from 50 individuals passing all quality control. RESULTS: We report 680 CpG sites with altered methylation (q value <0.05) including 60 with at least a 5% methylation difference at follow-up. Genes with differentially methylated CpG sites were enriched in biological pathways related to cancers, neurological function, cell signalling and transcription regulation. Next, linear mixed effects models were used to determine associations between occupational exposures with methylation at the 680 loci. Of these, more CpG sites were associated with fire-runs (108 for all and 78 for structure-fires only, q<0.05) than with fire-hours (27 for all fires and 1 for structure fires). These associations were independent of time since most recent fire, suggesting an impact of cumulative exposures. CONCLUSIONS: Overall, this study provides evidence that DNA methylation may be altered by fireground exposures, and the impact of this change on disease development should be evaluated.


Subject(s)
Firefighters , Neoplasms , Occupational Exposure , DNA Methylation , Epigenesis, Genetic , Humans , Occupational Exposure/adverse effects
10.
JAMA ; 328(15): 1523-1533, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36255426

ABSTRACT

Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination , Viral Load , Adult , Female , Humans , Male , COVID-19/diagnosis , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Prospective Studies , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Directed DNA Polymerase , SARS-CoV-2/genetics , Vaccination/statistics & numerical data , United States/epidemiology , Viral Load/drug effects , Viral Load/genetics , Viral Load/statistics & numerical data , Whole Genome Sequencing , Asymptomatic Infections/epidemiology , Asymptomatic Infections/therapy , Time Factors , Patient Acceptance of Health Care/statistics & numerical data , mRNA Vaccines
11.
MMWR Morb Mortal Wkly Rep ; 70(13): 495-500, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33793460

ABSTRACT

Messenger RNA (mRNA) BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) COVID-19 vaccines have been shown to be effective in preventing symptomatic COVID-19 in randomized placebo-controlled Phase III trials (1,2); however, the benefits of these vaccines for preventing asymptomatic and symptomatic SARS-CoV-2 (the virus that causes COVID-19) infection, particularly when administered in real-world conditions, is less well understood. Using prospective cohorts of health care personnel, first responders, and other essential and frontline workers* in eight U.S. locations during December 14, 2020-March 13, 2021, CDC routinely tested for SARS-CoV-2 infections every week regardless of symptom status and at the onset of symptoms consistent with COVID-19-associated illness. Among 3,950 participants with no previous laboratory documentation of SARS-CoV-2 infection, 2,479 (62.8%) received both recommended mRNA doses and 477 (12.1%) received only one dose of mRNA vaccine.† Among unvaccinated participants, 1.38 SARS-CoV-2 infections were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) per 1,000 person-days.§ In contrast, among fully immunized (≥14 days after second dose) persons, 0.04 infections per 1,000 person-days were reported, and among partially immunized (≥14 days after first dose and before second dose) persons, 0.19 infections per 1,000 person-days were reported. Estimated mRNA vaccine effectiveness for prevention of infection, adjusted for study site, was 90% for full immunization and 80% for partial immunization. These findings indicate that authorized mRNA COVID-19 vaccines are effective for preventing SARS-CoV-2 infection, regardless of symptom status, among working-age adults in real-world conditions. COVID-19 vaccination is recommended for all eligible persons.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Emergency Responders , Health Personnel , Occupational Diseases/prevention & control , Occupations/classification , Adolescent , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , Emergency Responders/statistics & numerical data , Female , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Prospective Studies , United States/epidemiology , Vaccines, Synthetic/immunology , Young Adult , mRNA Vaccines
12.
Environ Sci Technol ; 50(17): 9717-26, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27509013

ABSTRACT

Sensitivity of white sturgeon (Acipenser transmontanus) to copper (Cu) or cadmium (Cd) has been shown to significantly differ as a function of life-stage. This study investigated oxidative stress, metal homeostasis, and associated compensatory responses as potential mechanisms of this sensitivity pattern in three early life-stages. Sturgeon were most sensitive to Cu at 15 days post hatch (dph), which was accompanied by a significant increase in lipid peroxidation (LPO). Genes involved with amelioration of oxidative stress were significantly less inducible at this stage than in older, less sensitive fry. At 48 dph, acute lethality of sturgeon exposed to Cd was greatest and body LPO was significantly induced by 3.5-fold at 5 µg Cd/L. Moreover, there was a small but significant increase in antioxidative responses. At 139 dph, sturgeon were most tolerant to Cu and Cd and accumulation of these metals was least. Also, expression of metallothionein (MT) and apoptotic genes were greatest while expression of metal transporters was reduced and concentration of LPO was not different from controls. Our results suggest that life-stage specific sensitivity of white sturgeon to metals is complex, encompassing differences in the ability to mount compensatory responses important for metal homeostasis and combating oxidative stress and concomitant damages.


Subject(s)
Cadmium , Copper , Animals , Fishes , Metallothionein , Oxidative Stress , Water Pollutants, Chemical
13.
Environ Sci Technol ; 49(7): 4681-9, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25761200

ABSTRACT

Dioxin-like compounds (DLCs) are pollutants of global environmental concern. DLCs elicit their adverse outcomes through activation of the aryl hydrocarbon receptor (AhR). However, there is limited understanding of the mechanisms that result in differences in sensitivity to DLCs among different species of fishes. Understanding these mechanisms is critical for protection of the diversity of fishes exposed to DLCs, including endangered species. This study investigated specific mechanisms that drive responses of two endangered fishes, white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens) to DLCs. It determined whether differences in sensitivity to activation of AhRs (AhR1 and AhR2) can be predicted based on identities of key amino acids in the ligand binding domain (LBD). White sturgeon were 3- to 30-fold more sensitive than lake sturgeon to exposure to 5 different DLCs based on activation of AhR2. There were no differences in sensitivity between white sturgeon and lake sturgeon based on activation of AhR1. Adverse outcomes as a result of exposure to DLCs have been shown to be mediated through activation of AhR2, but not AhR1, in all fishes studied to date. This indicates that white sturgeon are likely to have greater sensitivity in vivo relative to lake sturgeon. Homology modeling and in silico mutagenesis suggests that differences in sensitivity to activation of AhR2 result from differences in key amino acids at position 388 in the LBD of AhR2 of white sturgeon (Ala-388) and lake sturgeon (Thr-388). This indicates that identities of key amino acids in the LBD of AhR2 could be predictive of both in vitro activation by DLCs and in vivo sensitivity to DLCs in these, and potentially other, fishes.


Subject(s)
Fishes/metabolism , Receptors, Aryl Hydrocarbon/drug effects , Water Pollutants, Chemical/toxicity , Amino Acids/analysis , Animals , Benzofurans/metabolism , Benzofurans/toxicity , COS Cells , Catalytic Domain , Chlorocebus aethiops , Dibenzofurans, Polychlorinated , Dioxins/metabolism , Endangered Species , Lakes , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/metabolism , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/genetics , Species Specificity , Water Pollutants, Chemical/metabolism
14.
Arch Environ Contam Toxicol ; 69(4): 494-505, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26044927

ABSTRACT

The past decades have witnessed a boom in nanotechnology that has led to increasing production and application of silver nanoparticles (AgNPs) in the textile industry due to their antimicrobial properties. Increase in the manufacture and use of NPs inevitably has resulted in their increased release into aquatic environments resulting in the exposure of organisms living in these environments. Recently, the risk of exposure to NPs and the potential interaction with biological systems has received increasing attention. The present study investigated the potential effects of predator cues on the toxicity of environmentally relevant concentrations of AgNPs in Daphnia carinata at organismal and biochemical levels. The results of this study show that exposure to environmentally relevant concentrations of AgNPs can result in adverse effects on daphnids with 24- and 48-h LC50 values of 3.56 and 1.75 µg/L, respectively. Furthermore, significant inhibition of reproduction was observed at concentrations as low as 0.5 µg/L. Exposure to predator cues alone resulted in an increase in reproduction and inhibition of superoxide dismutase activity in daphnids. However, coexposure to predator cues interacted in an antagonistic manner with AgNPs with a 24-h LC50 value of 10.81 µg/L compared with 3.56 µg/L for AgNPs alone. In summary, AgNPs could pose risks to aquatic invertebrates at environmentally relevant concentrations. Interestingly, the presence of other factors, such as predator cues, moderated the effects of exposure to AgNPs. Therefore, there is a need to further investigate the potential interactions between NPs and biological factors that can modulate toxicity of NPs for application to the risk assessment of aquatic invertebrates.


Subject(s)
Cues , Daphnia/physiology , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Predatory Behavior
15.
J Occup Environ Med ; 66(3): 202-211, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38013397

ABSTRACT

OBJECTIVE: Firefighters are occupationally exposed to per- and polyfluoroalkyl substances (PFAS). This study objective was to compare serum PFAS concentrations in incumbent and recruit firefighters and evaluate temporal trends among recruits. METHODS: Serum PFAS concentrations were measured in 99 incumbent and 55 recruit firefighters at enrollment in 2015-2016, with follow-up 20 to 37 months later for recruits. Linear and logistic regression and linear mixed-effects models were used for analyses. Fireground exposure impact on PFAS concentrations was investigated using adjusted linear and logistic regression models. RESULTS: Incumbents had lower n-PFOA and PFNA than recruits and most PFAS significantly decreased over time among male recruits. No significant links were found between cumulative fireground exposures and PFAS concentrations. CONCLUSIONS: Serum PFAS concentrations were not increased in incumbent firefighters compared with recruits and were not associated with cumulative fireground exposures.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Firefighters , Fluorocarbons , Humans , Male , Linear Models , Data Collection
16.
Environ Mol Mutagen ; 65(1-2): 55-66, 2024.
Article in English | MEDLINE | ID: mdl-38523457

ABSTRACT

Prostate cancer is the leading incident cancer among men in the United States. Firefighters are diagnosed with this disease at a rate 1.21 times higher than the average population. This increased risk may result from occupational exposures to many toxicants, including per- and polyfluoroalkyl substances (PFAS). This study assessed the association between firefighting as an occupation in general or PFAS serum levels, with DNA methylation. Only genomic regions previously linked to prostate cancer risk were selected for analysis: GSTP1, Alu repetitive elements, and the 8q24 chromosomal region. There were 444 male firefighters included in this study, with some analyses being conducted on fewer participants due to missingness. Statistical models were used to test associations between exposures and DNA methylation at CpG sites in the selected genomic regions. Exposure variables included proxies of cumulative firefighting exposures (incumbent versus academy status and years of firefighting experience) and biomarkers of PFAS exposures (serum concentrations of 9 PFAS). Proxies of cumulative exposures were associated with DNA methylation at 15 CpG sites and one region located within FAM83A (q-value <0.1). SbPFOA was associated with 19 CpG sites (q < 0.1), but due to low detection rates, this PFAS was modeled as detected versus not detected in serum. Overall, there is evidence that firefighting experience is associated with differential DNA methylation in prostate cancer risk loci, but this study did not find evidence that these differences are due to PFAS exposures specifically.


Subject(s)
Fluorocarbons , Occupational Exposure , Prostatic Neoplasms , Humans , Male , DNA Methylation/genetics , Occupational Exposure/adverse effects , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , DNA , Fluorocarbons/toxicity , Fluorocarbons/analysis , Neoplasm Proteins
17.
Diseases ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39195170

ABSTRACT

Hybrid immunity, as a result of infection and vaccination to SARS-CoV-2, has been well studied in adults but limited evidence is available in children. We evaluated the antibody responses to primary SARS-CoV-2 infection among vaccinated and unvaccinated children aged ≥ 5 years. METHODS: A longitudinal cohort study of children aged ≥ 5 was conducted during August 2021-August 2022, at sites in Arizona, Texas, Utah, and Florida. Children submitted weekly nasal swabs for PCR testing and provided sera 14-59 days after PCR-confirmed SARS-CoV-2 infection. Antibodies were measured by ELISA against the receptor-binding domain (RBD) and S2 domain of ancestral Spike (WA1), in addition to Omicron (BA.2) RBD, following infection in children, with and without prior monovalent ancestral mRNA COVID-19 vaccination. RESULTS: Among the 257 participants aged 5 to 18 years, 166 (65%) had received at least two mRNA COVID-19 vaccine doses ≥ 14 days prior to infection. Of these, 53 occurred during Delta predominance, with 37 (70%) unvaccinated at the time of infection. The remaining 204 infections occurred during Omicron predominance, with 53 (26%) participants unvaccinated. After adjusting for weight, age, symptomatic infection, and gender, significantly higher mean RBD AUC values were observed among the vaccinated group compared to the unvaccinated group for both WA1 and Omicron (p < 0.0001). A smaller percentage of vaccinated children reported fever during illness, with 55 (33%) reporting fever compared to 44 (48%) unvaccinated children reporting fever (p = 0.021). CONCLUSIONS: Children with vaccine-induced immunity at the time of SARS-CoV-2 infection had higher antibody levels during convalescence and experienced less fever compared to unvaccinated children during infection.

18.
Toxicol Sci ; 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36856729

ABSTRACT

Excretion of toxicants accumulated from firefighter exposures through breastmilk represents a potential hazard. We investigated if firefighting exposures could increase the concentration of polybrominated diphenyl ethers (PBDEs) and aryl hydrocarbon receptor (AhR) activation in excreted breastmilk. Firefighters and non-firefighters collected breastmilk samples prior to any firefighting responses (baseline) and at 2, 8, 24, 48, and 72 hours after a structural fire (firefighters only). Five PBDE analytes (BDEs 15, 28, 47, 99, and 153) detected in at least 90% of samples were summed for analyses. The AhR in vitro DR CALUX® bioassay assessed the mixture of dioxin-like compounds and toxicity from breastmilk extracts. Baseline PBDEs and AhR response were compared between firefighters and non-firefighters. Separate linear mixed models assessed changes in sum of PBDEs and AhR response among firefighters over time and effect modification by interior or exterior response was assessed. Baseline PBDE concentrations and AhR responses did not differ between the 21 firefighters and 10 non-firefighters. There were no significant changes in sum of PBDEs or AhR response among firefighters over time post-fire, and no variation by interior or exterior response. Plots of sum of PBDEs and AhR response over time demonstrated individual variation but no consistent pattern. Currently, our novel study results do not support forgoing breastfeeding after a fire exposure. However, given study limitations and the potential hazard of accumulated toxicants from firefighter exposures excreted via breastfeeding, future studies should consider additional contaminants and measures of toxicity by which firefighting may impact maternal and child health.

19.
Sci Rep ; 13(1): 20872, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012297

ABSTRACT

Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which may be attributable to environmental occupational exposures. Untargeted metabolomics was applied to characterize this suite of environmental exposures and biological changes in response to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be important regulators of firefighter's increased risk for urinary tract cancers.


Subject(s)
Firefighters , Fires , Urologic Neoplasms , Humans , Aspartic Acid , Uremic Toxins , Metabolome , Metabolomics/methods , Proline
20.
J Occup Environ Med ; 65(5): e312-e318, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36787539

ABSTRACT

OBJECTIVE: The aim of the study is to examine associations between years of firefighting service and eight chronological age-adjusted measures of blood leukocyte epigenetic age acceleration: Horvath, Hannum, SkinBloodClock, Intrinsic, Extrinsic, PhenoAge, GrimAge, and DNAm telomere length. METHODS: The study used a repeated measures analysis of data from 379 incumbent firefighters from eight career departments and 100 recruit firefighters from two of the departments, across the United States. RESULTS: Incumbent firefighters had on average greater epigenetic age acceleration compared with recruit firefighters, potentially due to the cumulative effect of occupational exposures. However, among incumbent firefighters, additional years of service were associated with epigenetic age deceleration, particularly for GrimAge, a strong predictor of mortality. CONCLUSIONS: Long-term studies with more specific occupational exposure classification are needed to better understand the relationship between years of service and aging biomarkers.


Subject(s)
Firefighters , Humans , United States/epidemiology , Aging/genetics , Longitudinal Studies , Leukocytes , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL