Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Proc Natl Acad Sci U S A ; 120(19): e2211510120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126720

ABSTRACT

Chondrocytes and osteoblasts differentiated from induced pluripotent stem cells (iPSCs) will provide insights into skeletal development and genetic skeletal disorders and will generate cells for regenerative medicine applications. Here, we describe a method that directs iPSC-derived sclerotome to chondroprogenitors in 3D pellet culture then to articular chondrocytes or, alternatively, along the growth plate cartilage pathway to become hypertrophic chondrocytes that can transition to osteoblasts. Osteogenic organoids deposit and mineralize a collagen I extracellular matrix (ECM), mirroring in vivo endochondral bone formation. We have identified gene expression signatures at key developmental stages including chondrocyte maturation, hypertrophy, and transition to osteoblasts and show that this system can be used to model genetic cartilage and bone disorders.


Subject(s)
Cartilage , Induced Pluripotent Stem Cells , Humans , Cartilage/metabolism , Chondrocytes/metabolism , Cell Differentiation , Osteoblasts , Induced Pluripotent Stem Cells/metabolism
2.
Hum Mol Genet ; 31(3): 362-375, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34494102

ABSTRACT

The nuclear pore complex (NPC) is a multi-protein complex that regulates the trafficking of macromolecules between the nucleus and cytoplasm. Genetic variants in components of the NPC have been shown to cause a range of neurological disorders, including intellectual disability and microcephaly. Translocated promoter region, nuclear basket protein (TPR) is a critical scaffolding element of the nuclear facing interior of the NPC. Here, we present two siblings with biallelic variants in TPR who present with a phenotype of microcephaly, ataxia and severe intellectual disability. The variants result in a premature truncation variant, and a splice variant leading to a 12-amino acid deletion respectively. Functional analyses in patient fibroblasts demonstrate significantly reduced TPR levels, and decreased TPR-containing NPC density. A compensatory increase in total NPC levels was observed, and decreased global RNA intensity in the nucleus. The discovery of variants that partly disable TPR function provide valuable insight into this essential protein in human disease, and our findings suggest that TPR variants are the cause of the siblings' neurological disorder.


Subject(s)
Intellectual Disability , Microcephaly , Humans , Intellectual Disability/genetics , Microcephaly/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics
3.
Clin Genet ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779778

ABSTRACT

Premature ovarian insufficiency is a common form of female infertility affecting up to 4% of women and characterised by amenorrhea with elevated gonadotropin before the age of 40. Oocytes require controlled DNA breakage and repair for homologous recombination and the maintenance of oocyte integrity. Biallelic disruption of the DNA damage repair gene, Fanconi anemia complementation group A (FANCA), is a common cause of Fanconi anaemia, a syndrome characterised by bone marrow failure, cancer predisposition, physical anomalies and POI. There is ongoing dispute about the role of heterozygous FANCA variants in POI pathogenesis, with insufficient evidence supporting causation. Here, we have identified biallelic FANCA variants in French sisters presenting with POI, including a novel missense variant of uncertain significance and a likely pathogenic deletion that initially evaded detection. Functional studies indicated no discernible effect on DNA damage sensitivity in patient lymphoblasts. These novel FANCA variants add evidence that heterozygous loss of one allele is insufficient to cause DNA damage sensitivity and POI. We propose that intragenic deletions, that are relatively common in FANCA, may be missed without careful analysis, and could explain the presumed causation of heterozygous variants. Accurate variant curation is critical to optimise patient care and outcomes.

4.
Hum Genet ; 142(7): 879-907, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37148394

ABSTRACT

Premature ovarian insufficiency (POI) is a common cause of infertility in women, characterised by amenorrhea and elevated FSH under the age of 40 years. In some cases, POI is syndromic in association with other features such as sensorineural hearing loss in Perrault syndrome. POI is a heterogeneous disease with over 80 causative genes known so far; however, these explain only a minority of cases. Using whole-exome sequencing (WES), we identified a MRPL50 homozygous missense variant (c.335T > A; p.Val112Asp) shared by twin sisters presenting with POI, bilateral high-frequency sensorineural hearing loss, kidney and heart dysfunction. MRPL50 encodes a component of the large subunit of the mitochondrial ribosome. Using quantitative proteomics and western blot analysis on patient fibroblasts, we demonstrated a loss of MRPL50 protein and an associated destabilisation of the large subunit of the mitochondrial ribosome whilst the small subunit was preserved. The mitochondrial ribosome is responsible for the translation of subunits of the mitochondrial oxidative phosphorylation machinery, and we found patient fibroblasts have a mild but significant decrease in the abundance of mitochondrial complex I. These data support a biochemical phenotype associated with MRPL50 variants. We validated the association of MRPL50 with the clinical phenotype by knockdown/knockout of mRpL50 in Drosophila, which resulted abnormal ovarian development. In conclusion, we have shown that a MRPL50 missense variant destabilises the mitochondrial ribosome, leading to oxidative phosphorylation deficiency and syndromic POI, highlighting the importance of mitochondrial support in ovarian development and function.


Subject(s)
Gonadal Dysgenesis, 46,XX , Hearing Loss, Sensorineural , Primary Ovarian Insufficiency , Female , Humans , Gonadal Dysgenesis, 46,XX/genetics , Hearing Loss, Sensorineural/genetics , Mitochondria/genetics , Mutation, Missense , Primary Ovarian Insufficiency/genetics , Animals , Drosophila melanogaster
5.
J Med Genet ; 59(8): 748-758, 2022 08.
Article in English | MEDLINE | ID: mdl-34740920

ABSTRACT

BACKGROUND: Clinical exome sequencing typically achieves diagnostic yields of 30%-57.5% in individuals with monogenic rare diseases. Undiagnosed diseases programmes implement strategies to improve diagnostic outcomes for these individuals. AIM: We share the lessons learnt from the first 3 years of the Undiagnosed Diseases Program-Victoria, an Australian programme embedded within a clinical genetics service in the state of Victoria with a focus on paediatric rare diseases. METHODS: We enrolled families who remained without a diagnosis after clinical genomic (panel, exome or genome) sequencing between 2016 and 2018. We used family-based exome sequencing (family ES), family-based genome sequencing (family GS), RNA sequencing (RNA-seq) and high-resolution chromosomal microarray (CMA) with research-based analysis. RESULTS: In 150 families, we achieved a diagnosis or strong candidate in 64 (42.7%) (37 in known genes with a consistent phenotype, 3 in known genes with a novel phenotype and 24 in novel disease genes). Fifty-four diagnoses or strong candidates were made by family ES, six by family GS with RNA-seq, two by high-resolution CMA and two by data reanalysis. CONCLUSION: We share our lessons learnt from the programme. Flexible implementation of multiple strategies allowed for scalability and response to the availability of new technologies. Broad implementation of family ES with research-based analysis showed promising yields post a negative clinical singleton ES. RNA-seq offered multiple benefits in family ES-negative populations. International data sharing strategies were critical in facilitating collaborations to establish novel disease-gene associations. Finally, the integrated approach of a multiskilled, multidisciplinary team was fundamental to having diverse perspectives and strategic decision-making.


Subject(s)
Undiagnosed Diseases , Australia , Exome , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Rare Diseases/genetics , Exome Sequencing
6.
Hum Mutat ; 43(10): 1443-1453, 2022 10.
Article in English | MEDLINE | ID: mdl-35801529

ABSTRACT

Premature ovarian insufficiency (POI) is a leading form of female infertility, characterised by menstrual disturbance and elevated follicle-stimulating hormone before age 40. It is highly heterogeneous with variants in over 80 genes potentially causative, but the majority of cases having no known cause. One gene implicated in POI pathology is TP63. TP63 encodes multiple p63 isoforms, one of which has been shown to have a role in the surveillance of genetic quality in oocytes. TP63 C-terminal truncation variants and N-terminal duplication have been described in association with POI, however, functional validation has been lacking. Here we identify three novel TP63 missense variants in women with nonsyndromic POI, including one in the N-terminal activation domain, one in the C-terminal inhibition domain, and one affecting a unique and poorly understood p63 isoform, TA*p63. Via blue-native page and luciferase reporter assays we demonstrate that two of these variants disrupt p63 dimerization, leading to constitutively active p63 tetramer that significantly increases the transcription of downstream targets. This is the first evidence that TP63 missense variants can cause isolated POI and provides mechanistic insight that TP63 variants cause POI due to constitutive p63 activation and accelerated oocyte loss in the absence of DNA damage.


Subject(s)
Primary Ovarian Insufficiency , Transcription Factors , Tumor Suppressor Proteins , Female , Humans , Mutation, Missense , Primary Ovarian Insufficiency/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
7.
Hum Genet ; 140(12): 1733-1751, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34647195

ABSTRACT

Mitochondrial disorders are collectively common, genetically heterogeneous disorders in both pediatric and adult populations. They are caused by molecular defects in oxidative phosphorylation, failure of essential bioenergetic supply to mitochondria, and apoptosis. Here, we present three affected individuals from a consanguineous family of Pakistani origin with variable seizures and intellectual disability. Both females display primary ovarian insufficiency (POI), while the male shows abnormal sex hormone levels. We performed whole exome sequencing and identified a recessive missense variant c.694C > T, p.Arg232Cys in TFAM that segregates with disease. TFAM (mitochondrial transcription factor A) is a component of the mitochondrial replisome machinery that maintains mtDNA transcription and replication. In primary dermal fibroblasts, we show depletion of mtDNA and significantly altered mitochondrial function and morphology. Moreover, we observed reduced nucleoid numbers with significant changes in nucleoid size or shape in fibroblasts from an affected individual compared to controls. We also investigated the effect of tfam impairment in zebrafish; homozygous tfam mutants carrying an in-frame c.141_149 deletion recapitulate the mtDNA depletion and ovarian dysgenesis phenotypes observed in affected humans. Together, our genetic and functional data confirm that TFAM plays a pivotal role in gonad development and expands the repertoire of mitochondrial disease phenotypes.


Subject(s)
DNA, Mitochondrial , DNA-Binding Proteins/genetics , Genes, Recessive , Hearing Loss/genetics , Intellectual Disability/genetics , Mitochondrial Proteins/genetics , Primary Ovarian Insufficiency/genetics , Seizures/genetics , Transcription Factors/genetics , Animals , Cells, Cultured , Female , Gonads/embryology , Humans , Male , Pedigree , Zebrafish/genetics
8.
Hum Mutat ; 40(7): 886-892, 2019 07.
Article in English | MEDLINE | ID: mdl-30924587

ABSTRACT

Premature ovarian insufficiency involves amenorrhea and elevated follicle-stimulating hormone before age 40, and its genetic basis is poorly understood. Here, we study 13 premature ovarian insufficiency (POI) patients using whole-exome sequencing. We identify PREPL and TP63 causative variants, and variants in other potentially novel POI genes. PREPL deficiency is a known cause of syndromic POI, matching the patients' phenotype. A role for TP63 in ovarian biology has previously been proposed but variants have been described in multiorgan syndromes, and not isolated POI. One patient with isolated POI harbored a de novo nonsense TP63 variant in the terminal exon and an unrelated patient had a different nonsense variant in the same exon. These variants interfere with the repression domain while leaving the activation domain intact. We expand the phenotypic spectrum of TP63-related disorders, provide a new genotype:phenotype correlation for TP63 and identify a new genetic cause of isolated POI.


Subject(s)
Codon, Nonsense , Primary Ovarian Insufficiency/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Female , Genetic Predisposition to Disease , Humans , Pedigree , Prolyl Oligopeptidases , Protein Domains , Serine Endopeptidases/genetics , Transcription Factors/chemistry , Tumor Suppressor Proteins/chemistry , Exome Sequencing/methods
9.
Int J Mol Sci ; 20(3)2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30699963

ABSTRACT

A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 are the principal aggrecanases in mice and humans; however, mice lacking the catalytic domain of both enzymes (TS-4/5∆cat) have no skeletal phenotype, suggesting there is an alternative aggrecanase for modulating normal growth and development in these mice. We previously identified aggrecanase activity that (a) cleaved at E↓G rather than E↓A bonds in the aggrecan core protein, and (b) was upregulated by retinoic acid but not IL-1α. The present study aimed to identify the alternative aggrecanase. Femoral head cartilage explants from TS-4/5∆cat mice were stimulated with IL-1α or retinoic acid and total RNA was analysed by microarray. In addition to ADAMTS-5 and matrix metalloproteinase (MMP)-13, which are not candidates for the novel aggrecanase, the microarray analyses identified MMP-11, calpain-5 and ADAMTS-9 as candidate aggrecanases upregulated by retinoic acid. When calpain-5 and MMP-11 failed to meet subsequent criteria, ADAMTS-9 emerged as the most likely candidate for the novel aggrecanase. Immunohistochemistry revealed ADAMTS-9 expression throughout the mouse growth plate and strong expression, particularly in the proliferative zone of the TS-4/5-∆cat mice. In conclusion, ADAMTS-9 has a novel specificity for aggrecan, cleaving primarily at E↓G rather than E↓A bonds in mouse cartilage. ADAMTS-9 might have more important roles in normal skeletal development compared with ADAMTS-4 and ADAMTS-5, which have key roles in joint pathology.


Subject(s)
ADAMTS4 Protein/metabolism , ADAMTS5 Protein/metabolism , ADAMTS9 Protein/metabolism , Cartilage/metabolism , Endopeptidases/metabolism , ADAMTS9 Protein/genetics , Aggrecans/metabolism , Animals , Arthritis/genetics , Arthritis/metabolism , Cells, Cultured , Immunohistochemistry , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice , RNA, Messenger/metabolism
10.
Brain ; 140(8): 2093-2103, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28633435

ABSTRACT

Defects in mRNA export from the nucleus have been linked to various neurodegenerative disorders. We report mutations in the gene MCM3AP, encoding the germinal center associated nuclear protein (GANP), in nine affected individuals from five unrelated families. The variants were associated with severe childhood onset primarily axonal (four families) or demyelinating (one family) Charcot-Marie-Tooth neuropathy. Mild to moderate intellectual disability was present in seven of nine affected individuals. The affected individuals were either compound heterozygous or homozygous for different MCM3AP variants, which were predicted to cause depletion of GANP or affect conserved amino acids with likely importance for its function. Accordingly, fibroblasts of affected individuals from one family demonstrated severe depletion of GANP. GANP has been described to function as an mRNA export factor, and to suppress TDP-43-mediated motor neuron degeneration in flies. Thus our results suggest defective mRNA export from nucleus as a potential pathogenic mechanism of axonal degeneration in these patients. The identification of MCM3AP variants in affected individuals from multiple centres establishes it as a disease gene for childhood-onset recessively inherited Charcot-Marie-Tooth neuropathy with intellectual disability.


Subject(s)
Acetyltransferases/genetics , Charcot-Marie-Tooth Disease/genetics , Genetic Predisposition to Disease/genetics , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Acetyltransferases/metabolism , Adolescent , Adult , Cells, Cultured , Charcot-Marie-Tooth Disease/complications , Child , Child, Preschool , Female , Fibroblasts/metabolism , Humans , Intellectual Disability/complications , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mutation , Pedigree , Young Adult
11.
PLoS Genet ; 11(9): e1005505, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26372225

ABSTRACT

Schmid metaphyseal chondrodysplasia (MCDS) involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER) in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR) in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation. Here, we investigated the role of the highly conserved IRE1/XBP1 pathway in the pathology of MCDS. Mice with a MCDS collagen X p.N617K knock-in mutation (ColXN617K) were crossed with mice in which Xbp1 was inactivated specifically in cartilage (Xbp1CartΔEx2), generating the compound mutant, C/X. The severity of dwarfism and hypertrophic zone expansion in C/X did not differ significantly from ColXN617K, revealing surprising redundancy for the IRE1/XBP1 UPR pathway in the pathology of MCDS. Transcriptomic analyses of hypertrophic zone cartilage identified differentially expressed gene cohorts in MCDS that are pathologically relevant (XBP1-independent) or pathologically redundant (XBP1-dependent). XBP1-independent gene expression changes included large-scale transcriptional attenuation of genes encoding secreted proteins and disrupted differentiation from proliferative to hypertrophic chondrocytes. Moreover, these changes were consistent with disruption of C/EBP-ß, a master regulator of chondrocyte differentiation, by CHOP, a transcription factor downstream of PERK that inhibits C/EBP proteins, and down-regulation of C/EBP-ß transcriptional co-factors, GADD45-ß and RUNX2. Thus we propose that the pathology of MCDS is underpinned by XBP1 independent UPR-induced dysregulation of C/EBP-ß-mediated chondrocyte differentiation. Our data suggest that modulation of C/EBP-ß activity in MCDS chondrocytes may offer therapeutic opportunities.


Subject(s)
Bone Diseases/pathology , CCAAT-Enhancer-Binding Protein-beta/antagonists & inhibitors , Cell Differentiation/physiology , Chondrocytes/pathology , DNA-Binding Proteins/physiology , Endoplasmic Reticulum Stress/physiology , Transcription Factors/physiology , Unfolded Protein Response/physiology , Animals , CCAAT-Enhancer-Binding Protein-beta/physiology , DNA-Binding Proteins/genetics , Gene Expression Profiling , Mice , Mice, Transgenic , Regulatory Factor X Transcription Factors , Transcription Factors/genetics , X-Box Binding Protein 1
12.
Genet Med ; 18(11): 1090-1096, 2016 11.
Article in English | MEDLINE | ID: mdl-26938784

ABSTRACT

PURPOSE: To prospectively evaluate the diagnostic and clinical utility of singleton whole-exome sequencing (WES) as a first-tier test in infants with suspected monogenic disease. METHODS: Singleton WES was performed as a first-tier sequencing test in infants recruited from a single pediatric tertiary center. This occurred in parallel with standard investigations, including single- or multigene panel sequencing when clinically indicated. The diagnosis rate, clinical utility, and impact on management of singleton WES were evaluated. RESULTS: Of 80 enrolled infants, 46 received a molecular genetic diagnosis through singleton WES (57.5%) compared with 11 (13.75%) who underwent standard investigations in the same patient group. Clinical management changed following exome diagnosis in 15 of 46 diagnosed participants (32.6%). Twelve relatives received a genetic diagnosis following cascade testing, and 28 couples were identified as being at high risk of recurrence in future pregnancies. CONCLUSIONS: This prospective study provides strong evidence for increased diagnostic and clinical utility of singleton WES as a first-tier sequencing test for infants with a suspected monogenic disorder. Singleton WES outperformed standard care in terms of diagnosis rate and the benefits of a diagnosis, namely, impact on management of the child and clarification of reproductive risks for the extended family in a timely manner.Genet Med 18 11, 1090-1096.


Subject(s)
Genetic Diseases, Inborn/diagnosis , High-Throughput Nucleotide Sequencing/methods , Pathology, Molecular , Exome/genetics , Genetic Diseases, Inborn/genetics , Humans , Infant, Newborn
13.
Qual Health Res ; 24(5): 654-64, 2014 May.
Article in English | MEDLINE | ID: mdl-24705683

ABSTRACT

Although gang-involved Latino youth in the United States are uniquely at risk of adverse consequences from sexual behavior, little research is available that can guide those who wish to develop interventions to reduce sexual risk among these youth. To facilitate the development of effective interventions, we identified cultural and contextual factors that influence sexual behavior and sex education among gang-involved Latino youth in one U.S. community. By analyzing transcripts from interviews and focus groups with three different groups of key stakeholders--gang-experienced Latino youth, the parents of gang-experienced Latino youth, and the personnel of a program providing comprehensive human services for gang-involved Latino youth--we identified three domains to be considered in developing sexual risk-reduction interventions for gang-involved U.S. Latino youth. The focus of our discussion is on the implications of these findings for future development or adaptation of interventions.


Subject(s)
Antisocial Personality Disorder/ethnology , Antisocial Personality Disorder/nursing , Health Knowledge, Attitudes, Practice/ethnology , Hispanic or Latino/psychology , Sex Education , Sexual Behavior/ethnology , Social Identification , Unsafe Sex/ethnology , Adolescent , Adult , Antisocial Personality Disorder/psychology , Female , Humans , Male , Parenting/psychology , Self Disclosure , Sexual Behavior/psychology , Social Welfare , United States , Unsafe Sex/psychology , Young Adult
14.
Child Youth Serv Rev ; 40: 1-5, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24910488

ABSTRACT

The incorporation of natural helpers into services has been suggested as an innovative strategy to address disparities for historically underserved children with conduct problems. In order to inform incorporation efforts, this study examined the perceptions of natural helpers serving one U.S. Latina/o community regarding need for services for children with conduct problems, their reactions to a specific parent training intervention, and the training and support needed to deliver this intervention successfully. Participants identified a need for culturally-responsive services for children with conduct problems, and felt that parent training would be appropriate for the families they serve. Participants further identified specific training and support that they would require in order to deliver parent training with fidelity and effectiveness. Findings support the suggestion that natural helpers have the potential to address service disparities among Latina/o children with conduct problems. Recommendations from natural helpers should guide the development of culturally-adapted preventive interventions that help address existing service disparities.

15.
Genes (Basel) ; 15(3)2024 03 04.
Article in English | MEDLINE | ID: mdl-38540391

ABSTRACT

Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.


Subject(s)
Infertility, Female , Primary Ovarian Insufficiency , Animals , Female , Humans , Mice , DNA Helicases/genetics , Homozygote , Infertility, Female/genetics , Mutation, Missense , Primary Ovarian Insufficiency/genetics
16.
Mol Cell Endocrinol ; 587: 112212, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38521400

ABSTRACT

RESEARCH QUESTION: Premature ovarian insufficiency (POI) is characterised by amenorrhea associated with elevated follicle stimulating hormone (FSH) under the age of 40 years and affects 1-3.7% women. Genetic factors explain 20-30% of POI cases, but most causes remain unknown despite genomic advancements. DESIGN: We used whole exome sequencing (WES) in four Iranian families, validated variants via Sanger sequencing, and conducted the Acyl-cLIP assay to measure HHAT enzyme activity. RESULTS: Despite ethnic homogeneity, WES revealed diverse genetic causes, including a novel homozygous nonsense variant in SYCP2L, impacting synaptonemal complex (SC) assembly, in the first family. Interestingly, the second family had two independent causes for amenorrhea - the mother had POI due to a novel homozygous loss-of-function variant in FANCM (required for chromosomal stability) and her daughter had primary amenorrhea due to a novel homozygous GNRHR (required for gonadotropic signalling) frameshift variant. WES analysis also provided cytogenetic insights. WES revealed one individual was in fact 46, XY and had a novel homozygous missense variant of uncertain significance in HHAT, potentially responsible for complete sex reversal although functional assays did not support impaired HHAT activity. In the remaining individual, WES indicated likely mosaic Turners with the majority of X chromosome variants having an allelic balance of ∼85% or ∼15%. Microarray validated the individual had 90% 45,XO. CONCLUSIONS: This study demonstrates the diverse causes of amenorrhea in a small, isolated ethnic cohort highlighting how a genetic cause in one individual may not clarify familial cases. We propose that, in time, genomic sequencing may become a single universal test required for the diagnosis of infertility conditions such as POI.


Subject(s)
Amenorrhea , Primary Ovarian Insufficiency , Humans , Female , Adult , Male , Amenorrhea/diagnosis , Amenorrhea/genetics , Iran , Primary Ovarian Insufficiency/genetics , Mutation, Missense , Genomics , DNA Helicases/genetics
17.
Child Youth Serv Rev ; 35(9): 1463-1467, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24729649

ABSTRACT

In response to the high levels of unmet need among historically underserved young children with conduct problems, this paper outlines some of the key issues involved in incorporating natural helpers into the delivery of parenting interventions for the treatment of conduct problems among historically underserved children. Strategies for the selection and training of natural helpers are discussed along with challenges that might be encountered in these processes. Directions for future research are also highlighted. With appropriate selection and training procedures in place, natural helpers may increase the accessibility of services for children and families and foster the reduction of service disparities.

18.
Gut ; 61(10): 1398-409, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22180059

ABSTRACT

BACKGROUND AND AIMS: IL-is important in gastric damage, mucosal repair and gastric cancer progression. We analysed IL-11 expression in H.pylori infected mouse stomach, the site of gastric IL-11 expression in mice and humans, and the effect of exogenous IL-11 on gastric mucosal homeostasis. METHODS: IL-11 protein was localised in mouse and human stomach. The impact of chronic, exogenous IL-11 on normal mouse stomach was examined histologically and transcriptionally by microarray, confirmed by mRNA and protein analysis. Functional impact of IL-11 on gastric acid secretion was determined. RESULTS: In mice infected with H.pylori, IL-11 was increased in fundic mucosa with temporal expression similar to IL-1b. IL-11 protein was localised predominantly to parietal cells in mouse and human stomach. Application of exogenous IL-11 to resulted in fundic parietal and chief cell loss, hyperplasia, mucous cell metaplasia and inflammation. Coincident with cellular changes were an increased gastric pH, altered parietal cell ultrastructure and altered gene expression, particularly genes involved in immune response and ion transport which could result in compromised acid secretion. We confirmed that a single dose of IL-11 effectively ablated the gastric response to histamine. CONCLUSIONS: IL-11 is a parietal cell cytokine that blocks gastric acid secretion, likely via reducing expression of parietal cell ion transport genes, CCKb and histamine H2 receptors. IL-11 expression is increased in H. pylori infected mouse stomach and treatment of wild type mice with IL-11 induced changes in the gastric fundic mucosa reminiscent of chronic atrophic gastritis, a precursor to gastric cancer.


Subject(s)
Gastritis, Atrophic/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori , Interleukin-11/metabolism , Parietal Cells, Gastric/metabolism , Animals , Biomarkers/metabolism , Gastric Acid/metabolism , Gastritis, Atrophic/microbiology , Gastritis, Atrophic/pathology , Helicobacter Infections/complications , Helicobacter Infections/pathology , Humans , Immunoblotting , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Parietal Cells, Gastric/pathology , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/metabolism
19.
Nat Med ; 29(7): 1681-1691, 2023 07.
Article in English | MEDLINE | ID: mdl-37291213

ABSTRACT

Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.


Subject(s)
Critical Illness , Rare Diseases , Infant , Child , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Multiomics , Whole Genome Sequencing/methods , Exome Sequencing
20.
Genes (Basel) ; 13(11)2022 11 14.
Article in English | MEDLINE | ID: mdl-36421788

ABSTRACT

The mitochondrial ribosome is critical to mitochondrial protein synthesis. Defects in both the large and small subunits of the mitochondrial ribosome can cause human disease, including, but not limited to, cardiomyopathy, hypoglycaemia, neurological dysfunction, sensorineural hearing loss and premature ovarian insufficiency (POI). POI is a common cause of infertility, characterised by elevated follicle-stimulating hormone and amenorrhea in women under the age of 40. Here we describe a patient with POI, sensorineural hearing loss and Hashimoto's disease. The co-occurrence of POI with sensorineural hearing loss indicates Perrault syndrome. Whole exome sequencing identified two compound heterozygous variants in mitochondrial ribosomal protein 7 (MRPS7), c.373A>T/p.(Lys125*) and c.536G>A/p.(Arg179His). Both novel variants are predicted to be pathogenic via in-silico algorithms. Variants in MRPS7 have been described only once in the literature and were identified in sisters, one of whom presented with congenital sensorineural hearing loss and POI, consistent with our patient phenotype. The other affected sister had a more severe disease course and died in early adolescence due to liver and renal failure before the reproductive phenotype was known. This second independent report validates that variants in MRPS7 are a cause of syndromic POI/Perrault syndrome. We present this case and review the current evidence supporting the integral role of the mitochondrial ribosome in supporting ovarian function.


Subject(s)
Gonadal Dysgenesis, 46,XX , Hearing Loss, Sensorineural , Primary Ovarian Insufficiency , Adolescent , Female , Humans , Mitochondrial Ribosomes/pathology , Gonadal Dysgenesis, 46,XX/genetics , Gonadal Dysgenesis, 46,XX/pathology , Primary Ovarian Insufficiency/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Ribosomal Proteins/genetics , Mitochondrial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL