Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
J Neurosci Res ; 99(7): 1864-1884, 2021 07.
Article in English | MEDLINE | ID: mdl-33772860

ABSTRACT

Traumatic brain injury (TBI) by an external physical impact results in compromised brain function via undesired neuronal death. Following the injury, resident and peripheral immune cells, astrocytes, and neural stem cells (NSCs) cooperatively contribute to the recovery of the neuronal function after TBI. However, excessive pro-inflammatory responses of immune cells, and the disappearance of endogenous NSCs at the injury site during the acute phase of TBI, can exacerbate TBI progression leading to incomplete healing. Therefore, positive outcomes may depend on early interventions to control the injury-associated cellular milieu in the early phase of injury. Here, we explore electrical stimulation (ES) of the injury site in a rodent model (male Sprague-Dawley rats) to investigate its overall effect on the constituent brain cell phenotype and composition during the acute phase of TBI. Our data showed that a brief ES for 1 hr on day 2 of TBI promoted anti-inflammatory phenotypes of microglia as assessed by CD206 expression and increased the population of NSCs and Nestin+ astrocytes at 7 days post-TBI. Also, ES effectively increased the number of viable neurons when compared to the unstimulated control group. Given the salience of microglia and neural stem cells for healing after TBI, our results strongly support the potential benefit of the therapeutic use of ES during the acute phase of TBI to regulate neuroinflammation and to enhance neuroregeneration.


Subject(s)
Brain Injuries, Traumatic/pathology , Electric Stimulation/methods , Nerve Regeneration/physiology , Neural Stem Cells , Neuroglia , Animals , Male , Phenotype , Rats , Rats, Sprague-Dawley
2.
Proc Natl Acad Sci U S A ; 114(26): E5077-E5084, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28611218

ABSTRACT

Injuries to the peripheral nervous system are major sources of disability and often result in painful neuropathies or the impairment of muscle movement and/or normal sensations. For gaps smaller than 10 mm in rodents, nearly normal functional recovery can be achieved; for longer gaps, however, there are challenges that have remained insurmountable. The current clinical gold standard used to bridge long, nonhealing nerve gaps, the autologous nerve graft (autograft), has several drawbacks. Despite best efforts, engineering an alternative "nerve bridge" for peripheral nerve repair remains elusive; hence, there is a compelling need to design new approaches that match or exceed the performance of autografts across critically sized nerve gaps. Here an immunomodulatory approach to stimulating nerve repair in a nerve-guidance scaffold was used to explore the regenerative effect of reparative monocyte recruitment. Early modulation of the immune environment at the injury site via fractalkine delivery resulted in a dramatic increase in regeneration as evident from histological and electrophysiological analyses. This study suggests that biasing the infiltrating inflammatory/immune cellular milieu after injury toward a proregenerative population creates a permissive environment for repair. This approach is a shift from the current modes of clinical and laboratory methods for nerve repair, which potentially opens an alternative paradigm to stimulate endogenous peripheral nerve repair.


Subject(s)
Nerve Regeneration/immunology , Peripheral Nerve Injuries/therapy , Sciatic Nerve/physiology , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Autografts , Chemokine CX3CL1/pharmacology , Peripheral Nerve Injuries/immunology , Peripheral Nerve Injuries/pathology , Rats , Sciatic Nerve/transplantation
3.
Brain ; 141(4): 1017-1027, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29444239

ABSTRACT

See Moon and Bradbury (doi:10.1093/brain/awy067) for a scientific commentary on this article.Many hundreds of thousands of people around the world are living with the long-term consequences of spinal cord injury and they need effective new therapies. Laboratory research in experimental animals has identified a large number of potentially translatable interventions but transition to the clinic is not straightforward. Further evidence of efficacy in more clinically-relevant lesions is required to gain sufficient confidence to commence human clinical trials. Of the many therapeutic candidates currently available, intraspinally applied chondroitinase ABC has particularly well documented efficacy in experimental animals. In this study we measured the effects of this intervention in a double-blinded randomized controlled trial in a cohort of dogs with naturally-occurring severe chronic spinal cord injuries that model the condition in humans. First, we collected baseline data on a series of outcomes: forelimb-hindlimb coordination (the prespecified primary outcome measure), skin sensitivity along the back, somatosensory evoked and transcranial magnetic motor evoked potentials and cystometry in 60 dogs with thoracolumbar lesions. Dogs were then randomized 1:1 to receive intraspinal injections of heat-stabilized, lipid microtube-embedded chondroitinase ABC or sham injections consisting of needle puncture of the skin. Outcome data were measured at 1, 3 and 6 months after intervention; skin sensitivity was also measured 24 h after injection (or sham). Forelimb-hindlimb coordination was affected by neither time nor chondroitinase treatment alone but there was a significant interaction between these variables such that coordination between forelimb and hindlimb stepping improved during the 6-month follow-up period in the chondroitinase-treated animals by a mean of 23%, but did not change in controls. Three dogs (10%) in the chondroitinase group also recovered the ability to ambulate without assistance. Sensitivity of the dorsal skin increased at 24 h after intervention in both groups but subsequently decreased to normal levels. Cystometry identified a non-significant improvement of bladder compliance at 1 month in the chondroitinase-injected dogs but this did not persist. There were no overall differences between groups in detection of sensory evoked potentials. Our results strongly support a beneficial effect of intraspinal injection of chondroitinase ABC on spinal cord function in this highly clinically-relevant model of chronic severe spinal cord injury. There was no evidence of long-term adverse effects associated with this intervention. We therefore conclude that this study provides strong evidence in support of initiation of clinical trials of chondroitinase ABC in humans with chronic spinal cord injury.


Subject(s)
Chondroitin ABC Lyase/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/veterinary , Animals , Disease Models, Animal , Dogs , Evoked Potentials, Somatosensory/drug effects , Exercise Test , Female , Injections, Spinal , Locomotion/drug effects , Male , Pain Measurement/drug effects , Skin/innervation , Skin/pathology , Spinal Cord Injuries/complications , Transcranial Magnetic Stimulation/methods , Treatment Outcome , Urinary Bladder Diseases/drug therapy , Urinary Bladder Diseases/etiology
4.
J Proteome Res ; 17(6): 2131-2143, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29671324

ABSTRACT

Traumatic brain injury (TBI) can occur across wide segments of the population, presenting in a heterogeneous manner that makes diagnosis inconsistent and management challenging. Biomarkers offer the potential to objectively identify injury status, severity, and phenotype by measuring the relative concentrations of endogenous molecules in readily accessible biofluids. Through a data-driven, discovery approach, novel biomarker candidates for TBI were identified in the serum lipidome of adult male Sprague-Dawley rats in the first week following moderate controlled cortical impact (CCI). Serum samples were analyzed in positive and negative modes by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). A predictive panel for the classification of injured and uninjured sera samples, consisting of 26 dysregulated species belonging to a variety of lipid classes, was developed with a cross-validated accuracy of 85.3% using omniClassifier software to optimize feature selection. Polyunsaturated fatty acids (PUFAs) and PUFA-containing diacylglycerols were found to be upregulated in sera from injured rats, while changes in sphingolipids and other membrane phospholipids were also observed, many of which map to known secondary injury pathways. Overall, the identified biomarker panel offers viable molecular candidates representing lipids that may readily cross the blood-brain barrier (BBB) and aid in the understanding of TBI pathophysiology.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic/metabolism , Lipid Metabolism , Metabolomics/methods , Animals , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/diagnosis , Chromatography, Liquid , Male , Rats , Rats, Sprague-Dawley , Software , Tandem Mass Spectrometry
5.
J Pharmacol Exp Ther ; 366(1): 66-74, 2018 07.
Article in English | MEDLINE | ID: mdl-29695410

ABSTRACT

In this study we investigated nanoliposome as an approach to tailoring the pharmacology of cerivastatin as a disease-modifying drug for pulmonary arterial hypertension (PAH). Cerivastatin encapsulated liposomes with an average diameter of 98 ± 27 nm were generated by a thin film and freeze-thaw process. The nanoliposomes demonstrated sustained drug-release kinetics in vitro and inhibited proliferation of pulmonary artery (PA) smooth muscle cells with significantly less cellular cytotoxicity as compared with free cerivastatin. When delivered by inhalation to a rat model of monocrotaline-induced PAH, cerivastatin significantly reduced PA pressure from 55.13 ± 9.82 to 35.56 ± 6.59 mm Hg (P < 0.001) and diminished PA wall thickening. Echocardiography showed that cerivastatin significantly reduced right ventricle thickening (monocrotaline: 0.34 ± 0.02 cm vs. cerivastatin: 0.26 ± 0.02 cm; P < 0.001) and increased PA acceleration time (monocrotaline: 13.98 ± 1.14 milliseconds vs. cerivastatin: 21.07 ± 2.80 milliseconds; P < 0.001). Nanoliposomal cerivastatin was equally effective or slightly better than cerivastatin in reducing PA pressure (monocrotaline: 67.06 ± 13.64 mm Hg; cerivastatin: 46.31 ± 7.64 mm Hg vs. liposomal cerivastatin: 37.32 ± 9.50 mm Hg) and improving parameters of right ventricular function as measured by increasing PA acceleration time (monocrotaline: 24.68 ± 3.92 milliseconds; cerivastatin: 32.59 ± 6.10 milliseconds vs. liposomal cerivastatin: 34.96 ± 7.51 milliseconds). More importantly, the rate and magnitude of toxic cerivastatin metabolite lactone generation from the intratracheally administered nanoliposomes was significantly lower as compared with intravenously administered free cerivastatin. These studies show that nanoliposome encapsulation improved in vitro and in vivo pharmacologic and safety profile of cerivastatin and may represent a safer approach as a disease-modifying therapy for PAH.


Subject(s)
Hypertension, Pulmonary/drug therapy , Liposomes/chemistry , Nanostructures/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Animals , Humans , Hypertension, Pulmonary/metabolism , Lactones/metabolism , Pyridines/adverse effects , Pyridines/therapeutic use , Rats , Safety
6.
Bioconjug Chem ; 29(9): 3072-3083, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30067354

ABSTRACT

In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.


Subject(s)
Immunity, Innate/drug effects , RNA, Messenger/genetics , Vaccines, Synthetic/pharmacology , Animals , Antibody Formation , Immunity, Cellular , Injections, Intramuscular , Mice , RAW 264.7 Cells , Transcription, Genetic , Vaccines, Synthetic/administration & dosage
7.
J Neurophysiol ; 115(5): 2456-69, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26864758

ABSTRACT

A central assertion in the study of neural processing is that our perception of the environment directly reflects the activity of our sensory neurons. This assertion reinforces the intuition that the strength of a sensory input directly modulates the amount of neural activity observed in response to that sensory feature: an increase in the strength of the input yields a graded increase in the amount of neural activity. However, cortical activity across a range of sensory pathways can be sparse, with individual neurons having remarkably low firing rates, often exhibiting suprathreshold activity on only a fraction of experimental trials. To compensate for this observed apparent unreliability, it is assumed that instead the local population of neurons, although not explicitly measured, does reliably represent the strength of the sensory input. This assumption, however, is largely untested. In this study, using wide-field voltage-sensitive dye (VSD) imaging of the somatosensory cortex in the anesthetized rat, we show that whisker deflection velocity, or stimulus strength, is not encoded by the magnitude of the population response at the level of cortex. Instead, modulation of whisker deflection velocity affects the likelihood of the cortical response, impacting the magnitude, rate of change, and spatial extent of the cortical response. An ideal observer analysis of the cortical response points to a probabilistic code based on repeated sampling across cortical columns and/or time, which we refer to as the probability of activation hypothesis. This hypothesis motivates a range of testable predictions for both future electrophysiological and future behavioral studies.


Subject(s)
Evoked Potentials, Somatosensory , Somatosensory Cortex/physiology , Voltage-Sensitive Dye Imaging/methods , Animals , Data Interpretation, Statistical , Female , Neurons/physiology , Rats , Rats, Sprague-Dawley , Somatosensory Cortex/cytology , Vibrissae/innervation , Voltage-Sensitive Dye Imaging/standards
8.
Eur J Neurosci ; 43(3): 474-85, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26370722

ABSTRACT

Despite significant advances in robotics, commercially advanced prosthetics provide only a small fraction of the functionality of the amputated limb that they are meant to replace. Peripheral nerve interfacing could provide a rich controlling link between the body and these advanced prosthetics in order to increase their overall utility. Here, we report on the development of a fully integrated regenerative microchannel interface with 30 microelectrodes and signal extraction capabilities enabling evaluation in an awake and ambulatory rat animal model. In vitro functional testing validated the capability of the microelectrodes to record neural signals similar in size and nature to those that occur in vivo. In vitro dorsal root ganglia cultures revealed striking cytocompatibility of the microchannel interface. Finally, in vivo, the microchannel interface was successfully used to record a multitude of single-unit action potentials through 63% of the integrated microelectrodes at the early time point of 3 weeks. This marks a significant advance in microchannel interfacing, demonstrating the capability of microchannels to be used for peripheral nerve interfacing.


Subject(s)
Action Potentials , Electrophysiology/methods , Wakefulness , Amplifiers, Electronic , Animals , Cells, Cultured , Electrophysiology/instrumentation , Ganglia, Spinal/physiology , Microelectrodes , Peripheral Nerves/physiology , Rats
9.
Nat Mater ; 13(3): 308-16, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24531400

ABSTRACT

Glioblastoma multiforme is an aggressive, invasive brain tumour with a poor survival rate. Available treatments are ineffective and some tumours remain inoperable because of their size or location. The tumours are known to invade and migrate along white matter tracts and blood vessels. Here, we exploit this characteristic of glioblastoma multiforme by engineering aligned polycaprolactone (PCL)-based nanofibres for tumour cells to invade and, hence, guide cells away from the primary tumour site to an extracortical location. This extracortial sink is a cyclopamine drug-conjugated, collagen-based hydrogel. When aligned PCL-nanofibre films in a PCL/polyurethane carrier conduit were inserted in the vicinity of an intracortical human U87MG glioblastoma xenograft, a significant number of human glioblastoma cells migrated along the aligned nanofibre films and underwent apoptosis in the extracortical hydrogel. Tumour volume in the brain was significantly lower following insertion of aligned nanofibre implants compared with the application of smooth fibres or no implants.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Hydrogels , Nanofibers , Polymers/chemistry , Heterografts , Humans
10.
Bioconjug Chem ; 26(12): 2336-49, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26440046

ABSTRACT

Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p < 0.05) enriched in CS-GAG hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p < 0.05) higher self-renewal when compared to neurospheres cultured in unconditioned hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.


Subject(s)
Chondroitin Sulfates/chemistry , Hydrogels/chemistry , Neural Stem Cells/cytology , Tissue Scaffolds/chemistry , Animals , Brain-Derived Neurotrophic Factor/administration & dosage , Cell Proliferation , Cells, Cultured , Fibroblast Growth Factor 2/administration & dosage , Rats
11.
Cells Tissues Organs ; 200(1): 69-77, 2014.
Article in English | MEDLINE | ID: mdl-25766202

ABSTRACT

Recent developments in the field of peripheral nerve imaging extend the capabilities of imaging modalities to assist in the diagnosis and treatment of patients with peripheral nerve maladies. Methods such as magnetic resonance imaging (MRI) and its derivative diffusion tensor imaging (DTI), ultrasound (US) and positron emission tomography (PET) are capable of assessing nerve structure and function following injury and relating the state of the nerve to electrophysiological and histological analysis. Of the imaging methods surveyed here, each offered unique and interesting advantages related to the field. MRI offered the opportunity to visualize immune activity on the injured nerve throughout the course of the regeneration process, and DTI offered numerical characterization of the injury and the ability to develop statistical bases for diagnosing injury. US extends imaging to the treatment phase by enabling more precise analgesic applications following surgery, and PET represents a novel method of assessing nerve injury through analysis of relative metabolism rates in injured and healthy tissue. Exciting new possibilities to enhance and extend the abilities of imaging methods are also discussed, including innovative contrast agents, some of which enable multimodal imaging approaches and present opportunities for treatment application.


Subject(s)
Diagnostic Imaging , Peripheral Nerves/anatomy & histology , Animals , Contrast Media , Humans , Molecular Imaging , Peripheral Nerves/diagnostic imaging , Radionuclide Imaging , Ultrasonography
12.
Proc Natl Acad Sci U S A ; 107(8): 3340-5, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-19884507

ABSTRACT

Chondroitin sulfate proteoglycans (CSPGs) are a major class of axon growth inhibitors that are up-regulated after spinal cord injury (SCI) and contribute to regenerative failure. Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition. But chABC loses its enzymatic activity rapidly at 37 degrees C, necessitating the use of repeated injections or local infusions for a period of days to weeks. These infusion systems are invasive, infection-prone, and clinically problematic. To overcome this limitation, we have thermostabilized chABC and developed a system for its sustained local delivery in vivo, obviating the need for chronically implanted catheters and pumps. Thermostabilized chABC remained active at 37 degrees C in vitro for up to 4 weeks. CSPG levels remained low in vivo up to 6 weeks post-SCI when thermostabilized chABC was delivered by a hydrogel-microtube scaffold system. Axonal growth and functional recovery following the sustained local release of thermostabilized chABC versus a single treatment of unstabilized chABC demonstrated significant differences in CSPG digestion. Animals treated with thermostabilized chABC in combination with sustained neurotrophin-3 delivery showed significant improvement in locomotor function and enhanced growth of cholera toxin B subunit-positive sensory axons and sprouting of serotonergic fibers. Therefore, improving chABC thermostability facilitates minimally invasive, sustained, local delivery of chABC that is potentially effective in overcoming CSPG-mediated regenerative failure. Combination therapy with thermostabilized chABC with neurotrophic factors enhances axonal regrowth, sprouting, and functional recovery after SCI.


Subject(s)
Axons/physiology , Chondroitin ABC Lyase/administration & dosage , Chondroitin ABC Lyase/chemistry , Drug Delivery Systems , Regeneration , Spinal Cord Injuries/drug therapy , Animals , Enzyme Stability , Hot Temperature , Male , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/physiopathology , Trehalose/chemistry
13.
Front Immunol ; 14: 1085547, 2023.
Article in English | MEDLINE | ID: mdl-36817432

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy in glioblastoma faces many challenges including insufficient CAR T cell abundance and antigen-negative tumor cells evading targeting. Unfortunately, preclinical studies evaluating CAR T cells in glioblastoma focus on tumor models that express a single antigen, use immunocompromised animals, and/or pre-treat with lymphodepleting agents. While lymphodepletion enhances CAR T cell efficacy, it diminishes the endogenous immune system that has the potential for tumor eradication. Here, we engineered CAR T cells to express IL7 and/or Flt3L in 50% EGFRvIII-positive and -negative orthotopic tumors pre-conditioned with non-lymphodepleting irradiation. IL7 and IL7 Flt3L CAR T cells increased intratumoral CAR T cell abundance seven days after treatment. IL7 co-expression with Flt3L modestly increased conventional dendritic cells as well as the CD103+XCR1+ population known to have migratory and antigen cross-presenting capabilities. Treatment with IL7 or IL7 Flt3L CAR T cells improved overall survival to 67% and 50%, respectively, compared to 9% survival with conventional or Flt3L CAR T cells. We concluded that CAR T cells modified to express IL7 enhanced CAR T cell abundance and improved overall survival in EGFRvIII heterogeneous tumors pre-conditioned with non-lymphodepleting irradiation. Potentially IL7 or IL7 Flt3L CAR T cells can provide new opportunities to combine CAR T cells with other immunotherapies for the treatment of glioblastoma.


Subject(s)
Glioblastoma , Glioma , Animals , Mice , ErbB Receptors , Glioblastoma/therapy , Interleukin-7 , T-Lymphocytes
14.
Soft Matter ; 8(6): 1964-1976, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-29805470

ABSTRACT

Hydrogel based scaffolds for neural tissue engineering can provide appropriate physico-chemical and mechanical properties to support neurite extension and facilitate transplantation of cells by acting as 'cell delivery vehicles'. Specifically, in situ gelling systems such as photocrosslinkable hydrogels can potentially conformally fill irregular neural tissue defects and serve as stem cell delivery systems. Here, we report the development of a novel chitosan based photocrosslinkable hydrogel system with tunable mechanical properties and degradation rates. A two-step synthesis of amino-ethyl methacrylate derivitized, degradable, photocrosslinkable chitosan hydrogels is described. When human mesenchymal stem cells were cultured in photocrosslinkable chitosan hydrogels, negligible cytotoxicity was observed. Photocrosslinkable chitosan hydrogels facilitated enhanced neurite differentiation from primary cortical neurons and enhanced neurite extension from dorsal root ganglia (DRG) as compared to agarose based hydrogels with similar storage moduli. Neural stem cells (NSCs) cultured within photocrosslinkable chitosan hydrogels facilitated differentiation into tubulin positive neurons and astrocytes. These data demonstrate the potential of photocrosslinked chitosan hydrogels, and contribute to an increasing repertoire of hydrogels designed for neural tissue engineering.

15.
Sci Adv ; 8(47): eabq4882, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36427309

ABSTRACT

Patients with glioblastoma (GBM) have limited options and require novel approaches to treatment. Here, we studied and deployed nonfreezing "cytostatic" hypothermia to stunt GBM growth. This growth-halting method contrasts with ablative, cryogenic hypothermia that kills both neoplastic and infiltrated healthy tissue. We investigated degrees of hypothermia in vitro and identified a cytostatic window of 20° to 25°C. For some lines, 18 hours/day of cytostatic hypothermia was sufficient to halt division in vitro. Next, we fabricated an experimental tool to test local cytostatic hypothermia in two rodent GBM models. Hypothermia more than doubled median survival, and all rats that successfully received cytostatic hypothermia survived their study period. Unlike targeted therapeutics that are successful in preclinical models but fail in clinical trials, cytostatic hypothermia leverages fundamental physics that influences biology broadly. It is a previously unexplored approach that could provide an additional option to patients with GBM by halting tumor growth.


Subject(s)
Cytostatic Agents , Glioblastoma , Hypothermia, Induced , Hypothermia , Rats , Animals , Rats, Sprague-Dawley , Hypothermia, Induced/methods
16.
Glia ; 59(6): 981-96, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21456043

ABSTRACT

Chondroitin sulfate-4,6 (CS-E) glycosaminoglycan (GAG) upregulation in astroglial scars is a major contributor to chondroitin sulfate proteoglycan (CSPG)-mediated inhibition [Gilbert et al. (2005) Mol Cell Neurosci 29:545­558]. However, the role of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S6ST) catalyzed sulfation of CS-E, and its contribution to CSPG-mediated inhibition of CNS regeneration remains to be fully elucidated. Here, we used in situ hybridization to show localized upregulation of GalNAc4S6ST mRNA after CNS injury. Using in vitro spot assays with immobilized CS-E, we demonstrate dose-dependent inhibition of rat embryonic day 18 (E18) cortical neurons. To determine whether selective downregulation of CS-E affected the overall inhibitory character of extracellular matrix produced by reactive astrocytes, single [against (chondroitin 4) sulfotransferase 11 (C4ST1) or GalNAc4S6ST mRNA] or double [against C4ST1 and GalNAc4S6ST mRNA] siRNA treatments were conducted and assayed using quantitative real-time polymerase chain reaction and high-performance liquid chromatography to confirm the specific downregulation of CS-4S GAG (CS-A) and CS-E. Spot and Bonhoeffer stripe assays using astrocyte-conditioned media from siRNA-treated rat astrocytes showed a significant decrease in inhibition of neuronal attachment and neurite extensions when compared with untreated and TGF-treated astrocytes. These findings reveal that selective attenuation of CS-E via siRNA targeting of GalNAc4S6ST significantly mitigates CSPG-mediated inhibition of neurons, potentially offering a novel intervention strategy for CNS injury.


Subject(s)
Astrocytes/metabolism , Cerebral Cortex/enzymology , Chondroitin Sulfate Proteoglycans/physiology , Neurons/metabolism , Sulfotransferases/antagonists & inhibitors , Sulfotransferases/biosynthesis , Animals , Animals, Newborn , Astrocytes/enzymology , Cells, Cultured , Chondroitin Sulfate Proteoglycans/genetics , Down-Regulation/genetics , Gene Targeting/methods , Male , Neural Inhibition/genetics , Neurons/enzymology , Rats , Rats, Sprague-Dawley , Sulfotransferases/genetics
17.
18.
Annu Rev Biomed Eng ; 12: 203-31, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20438370

ABSTRACT

In the body, cells encounter a complex milieu of signals, including topographical cues, in the form of the physical features of their surrounding environment. Imposed topography can affect cells on surfaces by promoting adhesion, spreading, alignment, morphological changes, and changes in gene expression. Neural response to topography is complex, and it depends on the dimensions and shapes of physical features. Looking toward repair of nerve injuries, strategies are being explored to engineer guidance conduits with precise surface topographies. How neurons and other cell types sense and interpret topography remains to be fully elucidated. Studies reviewed here include those of topography on cellular organization and function as well as potential cellular mechanisms of response.


Subject(s)
Nerve Regeneration , Neurons/physiology , Neurons/ultrastructure , Animals , Axons/physiology , Axons/ultrastructure , Coated Materials, Biocompatible , Growth Cones/physiology , Growth Cones/ultrastructure , Models, Animal
19.
Biomed Microdevices ; 13(2): 361-73, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21240559

ABSTRACT

Bio-electrodes have traditionally been made of materials such as metal and silicon that are much stiffer than the tissue from which they record or stimulate. This difference in mechanical compliance can cause incomplete or ineffective contact with the tissue. The electrode stiffness has also been hypothesized to cause chronic low-grade injury and scar-tissue encapsulation, reducing stimulation and recording efficiency. As an initial step to resolve these issues with electrode performance, we have developed and characterized electrically-functional, low-Young's modulus, microcable-shaped neuroelectrodes and demonstrated electrophysiological recording functionality. The microcable geometry gives the electrodes a similar footprint to traditional wire and microwire neuroelectrodes, while reducing the difference in Young's modulus from nervous tissue by orders of magnitude. The electrodes are composed of PDMS and thin-film gold, affording them a high-level of compliance that is well suited for in vivo applications. The composite Young's modulus of the electrode was experimentally determined to be 1.81 ± 0.01 MPa. By incorporating a high-tear-strength silicone, Sylgard 186, the load at failure was increased by 92%, relative to that of the commonly used Sylgard 184. The microcable electrodes were also electromechanically tested, with measurable conductivity (220 kΩ) at an average 8% strain (n = 2) after the application of 200% strain. Electrophysiological recording is demonstrated by wrapping the electrode around a peripheral nerve, utilizing the compliance and string-like profile of the electrode for effective recording in nerve tissue.


Subject(s)
Dimethylpolysiloxanes/chemistry , Gold/chemistry , Mechanical Phenomena , Microtechnology/instrumentation , Nervous System , Electrodes , Electrophysiological Phenomena , Materials Testing , Peripheral Nerves/physiology , Stress, Mechanical
20.
Adv Healthc Mater ; 10(19): e2100102, 2021 10.
Article in English | MEDLINE | ID: mdl-34342167

ABSTRACT

The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.


Subject(s)
Neurons , Synapses , Axons , Cell Adhesion Molecules , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL