Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
J Environ Manage ; 320: 115739, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35932737

ABSTRACT

Large amounts of process water with considerable concentrations of recalcitrant organic contaminants, such as polycyclic aromatic hydrocarbon (PAHs), phenolic compounds (PCs), and benzene, toluene, ethylbenzene, and xylene (BTEX), are generated by several segments of oil and gas industries. These segments include refineries, hydraulic fracturing (HF), and produced waters from the extraction of shale gas (SGPW), coalbed methane (CBMPW) and oil sands (OSPW). In fact, the concentration of PCs and PAHs in process water from refinery can reach 855 and 742 mg L-1, respectively. SGPW can contain BTEX at concentrations as high as 778 mg L-1. Adsorption can effectively target those organic compounds for the remediation of the process water by applying carbon-based adsorbents generated from organic feedstocks. Such organic feedstocks usually come from organic waste materials that would otherwise be conventionally disposed of. The objective of this review paper is to cover the scientific progress in the studies of carbon-based adsorbents from organic feedstocks that were successfully applied for the removal of organic contaminants PAHs, PCs, and BTEX. The contributions of this review paper include the important aspects of (i) production and characterization of carbon-based adsorbents to enhance the efficiency of organic contaminant adsorption, (ii) adsorption properties and mechanisms associated with the engineered adsorbent and expected for certain pollutants, and (iii) research gaps in the field, which could be a guidance for future studies. In terms of production and characterization of materials, standalone pyrolysis or hybrid procedures (pyrolysis associated with chemical activation methods) are the most applied techniques, yielding high surface area and other surface properties that are crucial to the adsorption of organic contaminants. The adsorption of organic compounds on carbonaceous materials performed well at wide range of pH and temperatures and this is desirable considering the pH of process waters. The mechanisms are frequently pore filling, hydrogen bonding, π-π, hydrophobic and electrostatic interactions, and same precursor material can present more than one adsorption mechanism, which can be beneficial to target more than one organic contaminant. Research gaps include the evaluation of engineered adsorbents in terms of competitive adsorption, application of adsorbents in oil and gas industry process water, adsorbent regeneration and reuse studies, and pilot or full-scale applications.


Subject(s)
Hydraulic Fracking , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Adsorption , Carbon , Oil and Gas Fields , Toluene , Water , Water Pollutants, Chemical/chemistry , Xylenes
2.
J Environ Manage ; 289: 112407, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33799065

ABSTRACT

This is the first large-scale field pilot study that examined the feasibility and effectiveness of petroleum coke (PC), produced by a Fluid Coking Process, as an adsorbent for oil sands process water (OSPW) treatment. The pilot program consisted of an inline series of two reactors (pipeline reactor 1, and batch reactor 2) and lasted for approximately 4 months. The quality of treated OSPW as a function of residence time in the PC deposit under natural climatic conditions was assessed by looking at changes in organic compounds (acid extractable fraction (AEF), dissolved organic carbon (DOC), etc.), vanadium, and other trace element concentrations, major ions, conductivity, total suspended solids (TSS), pH and toxicity. The results indicated that the AEF adsorption by PC followed pseudo-second order kinetics and the overall combined removal efficiency of AEF was greater than 80%. Reactor 1 showed higher AEF removal than Reactor 2. DOC decreased about 50% after 4 weeks of retention in the PC deposit. An increase of vanadium concentration after PC contact indicated that vanadium leaching occurred. However, with increased residence time in the PC deposit, vanadium concentration decreased in the cells and tanks by 42% and 98%, respectively. Filtration through the PC deposit reduced the TSS in OSPW to less than laboratory detectable limits. Unlike untreated OSPW, treated OSPW did not show an acute toxic response based on whole effluent toxicity testing using trout, zooplankton, and bacteria. This study demonstrated that PC adsorption is a potentially commercially viable technology for highly efficient treatment of OSPW.


Subject(s)
Coke , Petroleum , Water Pollutants, Chemical , Carboxylic Acids , Oil and Gas Fields , Pilot Projects , Water , Water Pollutants, Chemical/analysis
3.
J Hazard Mater ; 454: 131441, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37116326

ABSTRACT

A novel photocatalyst, Bi2WO6/NiO/Ag, with hierarchical flower-like Z-scheme heterojunction, which exhibited excellent stability and photocatalytic activity over a wide light spectrum, was firstly synthesized and used in the remediation of real oil sands process water (OSPW) and achieved complete removal of aromatics, classical naphthenic acids (NAs), and heteroatomic NAs after 6 h of photocatalytic treatment. The acute toxicity of OSPW was completely eliminated after only 2 h of treatment. h+ and ∙OH were found to be the major oxidative species in the photocatalytic system. The enhanced photocatalytic efficiency is the result of the unique Z-scheme electron transfer among electron mediators Ag, NiO, and Bi2WO6, which was supported by the in-situ irradiated XPS. The study benefits the design of engineered passive treatment approach for OSPW remediation through solar light-driven catalyst.

4.
Sci Total Environ ; 809: 151120, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34756904

ABSTRACT

Biochar has been widely studied as an adsorbent for the removal of contaminants from wastewater due to its unique characteristics, such as having a large surface area, well-distributed pores and high abundance of surface functional groups. Critical review of the literature was performed to understand the state of research in utilizing biochars for industrial wastewater remediation with emphasis on pollutants that co-exist in wastewater from several industrial activities, such as textile, pharmaceutical and mining industries. Such pollutants include organic (such as synthetic dyes, phenolic compounds) and inorganic contaminants (such as cadmium, lead). Multiple correspondence analyses suggest that through batch equilibrium, columns or constructed wetlands, researchers have used mechanistic modelling of isotherms, kinetics, and thermodynamics to evaluate contaminant removal in either synthetic or real industrial wastewaters. The removal of organic and inorganic contaminants in wastewater by biochar follows several mechanisms: precipitation, surface complexation, ion exchange, cation-π interaction, and electrostatic attraction. Biochar production and modifications promote good adsorption capacity for those pollutants because biochar properties stemming from production were linked to specific adsorption mechanisms, such as hydrophobic and electrostatic interactions. For instance, adsorption capacity of malachite green ranged from 30.2 to 4066.9 mg g-1 depending on feedstock type, pyrolysis temperature, and chemical modifications. Pyrolyzing biomass at above 500 °C might improve biochar quality to target co-existing pollutants. Treating biochars with acids can also improve pollutant removal, except that the contribution of precipitation is reduced for potentially toxic elements. Studies on artificial intelligence and machine learning are still in their infancy in wastewater remediation with biochars. Meanwhile, a framework for integrating artificial intelligence and machine learning into biochar wastewater remediation systems is proposed. The reutilization and disposal of spent biochar and the contaminant release from spent biochar are important areas that need to be further studied.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Artificial Intelligence , Charcoal , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 264(Pt 1): 128455, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33032208

ABSTRACT

In this study, activated carbon was derived from pulverized waste tires using carbonization and chemical activation techniques. Single and competitive batch adsorption experiments for the removal of three synthetic heavy metal ions (Pb2+, Cu2+ and Zn2+) from an aqueous solution were performed to benchmark the efficiency of the Tire-derived Activated Carbon (TAC) in comparison to that of commercial activated carbon (CAC), which was used as the reference material. The sorbents physicochemical properties with corresponding adsorption mechanisms were evaluated by different experimental techniques. TAC exhibited great potential to adsorb heavy metals, with monolayer adsorption capacities as high as 322.5, 185.2, and 71.9 mg g-1 for Pb2+, Cu2+ and Zn2+, respectively, which were significantly higher than the adsorption capacities exhibited by CAC, which were 42.5, 15.0, and 14.0 mg∙g-1 for Pb2+, Cu2+ and Zn2+, respectively. Competitive adsorption results demonstrated the adsorption ability of sorbents is restricted by presence of other ions, and was decreased compared to the single sorption. Sorption kinetics data, with better fit to the pseudo-second order kinetics model, revealed that TAC had faster sorption rate in comparison to CAC. The adsorption capacities of TAC and CAC were reduced to half of their initial capacities after three successive adsorption-desorption cycles. Zeta potential, FT-IR, and XPS analyses revealed that electrostatic attraction and surface complexation mechanisms, as two metal-adsorbing mechanisms, were more influential for TAC. For CAC, a higher cation exchange capacity (CEC) value indicated that the removal of heavy metals by ion exchange was the predominant mechanism.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Charcoal , Kinetics , Spectroscopy, Fourier Transform Infrared
6.
Water Res ; 154: 402-411, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30822600

ABSTRACT

This study illustrated the preparation, characterization and the use of carbon xerogel materials for the adsorption of acid-extractable fractions (AEF) and naphthenic acids (NAs) from oil sands process water (OSPW). Adsorption results demonstrated that the mesoporous carbonaceous material can successfully be used to adsorb persistent and toxic organic contaminants from OSPW. Carbon xerogel (CX) made at pH 5.5 showed high surface area (573 m2/g) and removed a larger amount of AEF than CX made at pH 6.9 (391 m2/g). The adsorption equilibrium was reached by 24 h for both AEF and classical NAs. 74.6% of AEF and 88.8% of classical NAs were removed by CX5.5 during 24-h adsorption. With respect to classical NAs, a larger the carbon number resulted in higher NA removal. Carbon number had more influence on NA removal when compared with hydrogen deficiency resulting from rings or unsaturated bonding formation (-Z number). The equilibrium adsorption capacity was found to be 15 mg AEF/g and 7.8 mg NAs/g for CX5.5. Adsorption of AEF and classical NAs onto CX5.5 followed pseudo-second order kinetics. With respect to diffusion of AEF and NAs, there were three distinct diffusion regions: bulk, film and pore. Pore diffusion had the lowest rate constant in all cases analyzed and was thus the rate limiting step. The results of this study showed that a mesoporous carbonaceous material such as CX may have the potential to be utilized in a fixed bed adsorption/filtration systems for continuous treatment of OSPW or as a semi-passive treatment method in pit lakes for the removal of organic constituents from OSPW.


Subject(s)
Oil and Gas Fields , Water Pollutants, Chemical , Adsorption , Carbon , Carboxylic Acids , Filtration
SELECTION OF CITATIONS
SEARCH DETAIL