Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280374

ABSTRACT

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Subject(s)
Complement C3 , Intestinal Mucosa , Microbiota , Animals , Humans , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Neutrophils , Complement C3/metabolism , Stromal Cells/metabolism
2.
Annu Rev Immunol ; 34: 609-33, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27168246

ABSTRACT

The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3(+)CD4(+) regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations-those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work-as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular.


Subject(s)
Adipose Tissue/immunology , Colon/immunology , Mucous Membrane/immunology , Muscle, Skeletal/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Forkhead Transcription Factors/metabolism , Homeostasis , Humans , Organ Specificity
3.
Cell ; 185(14): 2542-2558.e18, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35714609

ABSTRACT

Medullary thymic epithelial cells (mTECs) ectopically express thousands of peripheral-tissue antigens (PTAs), which drive deletion or phenotypic diversion of self-reactive immature T cells during thymic differentiation. Failure of PTA expression causes multiorgan autoimmunity. By assaying chromatin accessibility in individual mTECs, we uncovered signatures of lineage-defining transcription factors (TFs) for skin, lung, liver, and intestinal cells-including Grhl, FoxA, FoxJ1, Hnf4, Sox8, and SpiB-in distinct mTEC subtypes. Transcriptomic and histologic analyses showed that these subtypes, which we collectively term mimetic cells, expressed PTAs in a biologically logical fashion, mirroring extra-thymic cell types while maintaining mTEC identity. Lineage-defining TFs bound to mimetic-cell open chromatin regions and were required for mimetic cell accumulation, whereas the tolerogenic factor Aire was partially and variably required. Expression of a model antigen in mimetic cells sufficed to induce cognate T cell tolerance. Thus, mTECs co-opt lineage-defining TFs to drive mimetic cell accumulation, PTA expression, and self-tolerance.


Subject(s)
Epithelial Cells , T-Lymphocytes , Animals , Antigens , Cell Differentiation , Chromatin/metabolism , Epithelial Cells/metabolism , Mice , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Nat Immunol ; 24(12): 2053-2067, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932455

ABSTRACT

Following acute injury, stromal cells promote tissue regeneration by a diversity of mechanisms. Time-resolved single-cell RNA sequencing of muscle mesenchymal stromal cells (MmSCs) responding to acute injury identified an 'early-responder' subtype that spiked on day 1 and expressed a notable array of transcripts encoding immunomodulators. IL-1ß, TNF-α and oncostatin M each strongly and rapidly induced MmSCs transcribing this immunomodulatory program. Macrophages amplified the program but were not strictly required for its induction. Transfer of the inflammatory MmSC subtype, tagged with a unique surface marker, into healthy hindlimb muscle induced inflammation primarily driven by neutrophils and macrophages. Among the abundant inflammatory transcripts produced by this subtype, Cxcl5 was stroma-specific and highly upregulated with injury. Depletion of this chemokine early after injury revealed a substantial impact on recruitment of neutrophils, a prolongation of inflammation to later times and an effect on tissue regeneration. Mesenchymal stromal cell subtypes expressing a comparable inflammatory program were found in a mouse model of muscular dystrophy and in several other tissues and pathologies in both mice and humans. These 'early-responder' mesenchymal stromal cells, already in place, permit rapid and coordinated mobilization and amplification of critical cell collaborators in response to injury.


Subject(s)
Inflammation , Mesenchymal Stem Cells , Humans , Mice , Animals , Inflammation/metabolism , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Neutrophils/metabolism , Wound Healing
5.
Cell ; 181(6): 1276-1290.e13, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32402238

ABSTRACT

At the species level, immunity depends on the selection and transmission of protective components of the immune system. A microbe-induced population of RORγ-expressing regulatory T cells (Tregs) is essential in controlling gut inflammation. We uncovered a non-genetic, non-epigenetic, non-microbial mode of transmission of their homeostatic setpoint. RORγ+ Treg proportions varied between inbred mouse strains, a trait transmitted by the mother during a tight age window after birth but stable for life, resistant to many microbial or cellular perturbations, then further transferred by females for multiple generations. RORγ+ Treg proportions negatively correlated with IgA production and coating of gut commensals, traits also subject to maternal transmission, in an immunoglobulin- and RORγ+ Treg-dependent manner. We propose a model based on a double-negative feedback loop, vertically transmitted via the entero-mammary axis. This immunologic mode of multi-generational transmission may provide adaptability and modulate the genetic tuning of gut immune responses and inflammatory disease susceptibility.


Subject(s)
Digestive System/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Disease Susceptibility/immunology , Female , Gastrointestinal Microbiome/immunology , Homeostasis/immunology , Immunoglobulin A/immunology , Inflammation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Inbred NOD , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
6.
Cell ; 176(4): 897-912.e20, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30686579

ABSTRACT

A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of differentiation and function of an organ system. We generated matched epigenome and transcriptome measurements in 86 primary cell types that span the mouse immune system and its differentiation cascades. This breadth of data enable variance components analysis that suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-driven logic, and multiple regression that connects genes to the enhancers that regulate them. Relating transcription factor (TF) expression to the genome-wide accessibility of their binding motifs classifies them as predominantly openers or closers of local chromatin accessibility, pinpointing specific cis-regulatory elements where binding of given TFs is likely functionally relevant, validated by chromatin immunoprecipitation sequencing (ChIP-seq). Overall, this cis-regulatory atlas provides a trove of information on transcriptional regulation through immune differentiation and a foundational scaffold to define key regulatory events throughout the immunological genome.


Subject(s)
Immune System/immunology , Immune System/metabolism , Regulatory Elements, Transcriptional/genetics , Animals , Binding Sites/genetics , Chromatin , Chromatin Immunoprecipitation/methods , Enhancer Elements, Genetic/genetics , Epigenomics/methods , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Transcription Factors/metabolism , Transcriptome/genetics
7.
Nat Immunol ; 22(2): 216-228, 2021 02.
Article in English | MEDLINE | ID: mdl-33462454

ABSTRACT

CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.


Subject(s)
Bacteria/pathogenicity , Bacterial Infections/microbiology , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/parasitology , Colon/microbiology , Colon/parasitology , Gastrointestinal Microbiome , Heligmosomatoidea/pathogenicity , Intestinal Diseases, Parasitic/parasitology , Animals , Bacteria/immunology , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Colon/immunology , Colon/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Heligmosomatoidea/immunology , Host-Pathogen Interactions , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Intestinal Diseases, Parasitic/genetics , Intestinal Diseases, Parasitic/immunology , Intestinal Diseases, Parasitic/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Nematospiroides dubius/immunology , Nematospiroides dubius/pathogenicity , Nippostrongylus/immunology , Nippostrongylus/pathogenicity , Phenotype , Salmonella enterica/immunology , Salmonella enterica/pathogenicity , Single-Cell Analysis , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptome
8.
Nat Immunol ; 22(5): 607-619, 2021 05.
Article in English | MEDLINE | ID: mdl-33833438

ABSTRACT

FOXP3 deficiency in mice and in patients with immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome results in fatal autoimmunity by altering regulatory T (Treg) cells. CD4+ T cells in patients with IPEX syndrome and Foxp3-deficient mice were analyzed by single-cell cytometry and RNA-sequencing, revealing heterogeneous Treg-like cells, some very similar to normal Treg cells, others more distant. Conventional T cells showed no widespread activation or helper T cell bias, but a monomorphic disease signature affected all CD4+ T cells. This signature proved to be cell extrinsic since it was extinguished in mixed bone marrow chimeric mice and heterozygous mothers of patients with IPEX syndrome. Normal Treg cells exerted dominant suppression, quenching the disease signature and revealing in mutant Treg-like cells a small cluster of genes regulated cell-intrinsically by FOXP3, including key homeostatic regulators. We propose a two-step pathogenesis model: cell-intrinsic downregulation of core FOXP3-dependent genes destabilizes Treg cells, de-repressing systemic mediators that imprint the disease signature on all T cells, furthering Treg cell dysfunction. Accordingly, interleukin-2 treatment improved the Treg-like compartment and survival.


Subject(s)
Diabetes Mellitus, Type 1/congenital , Diarrhea/genetics , Forkhead Transcription Factors/deficiency , Genetic Diseases, X-Linked/genetics , Immune System Diseases/congenital , T-Lymphocytes, Regulatory/immunology , Adolescent , Animals , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Datasets as Topic , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diarrhea/blood , Diarrhea/immunology , Disease Models, Animal , Flow Cytometry , Forkhead Transcription Factors/genetics , Genetic Diseases, X-Linked/blood , Genetic Diseases, X-Linked/immunology , Humans , Immune System Diseases/blood , Immune System Diseases/genetics , Immune System Diseases/immunology , Infant , Male , Mice , Mice, Transgenic , Mutation , RNA-Seq , Single-Cell Analysis , T-Lymphocytes, Regulatory/metabolism , Young Adult
9.
Immunity ; 57(6): 1345-1359.e5, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38692280

ABSTRACT

Regulatory T (Treg) cells in epidydimal visceral adipose tissue (eVAT) of lean mice and humans regulate metabolic homeostasis. We found that constitutive or punctual depletion of eVAT-Treg cells reined in the differentiation of stromal adipocyte precursors. Co-culture of these precursors with conditional medium from eVAT-Treg cells limited their differentiation in vitro, suggesting a direct effect. Transcriptional comparison of adipocyte precursors, matured in the presence or absence of the eVAT-Treg-conditioned medium, identified the oncostatin-M (OSM) signaling pathway as a key distinction. Addition of OSM to in vitro cultures blocked the differentiation of adipocyte precursors, while co-addition of anti-OSM antibodies reversed the ability of the eVAT-Treg-conditioned medium to inhibit in vitro adipogenesis. Genetic depletion of OSM (specifically in Treg) cells or of the OSM receptor (specifically on stromal cells) strongly impaired insulin sensitivity and related metabolic indices. Thus, Treg-cell-mediated control of local progenitor cells maintains adipose tissue and metabolic homeostasis, a regulatory axis seemingly conserved in humans.


Subject(s)
Adipocytes , Cell Differentiation , Homeostasis , Insulin Resistance , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Humans , Mice , Adipocytes/metabolism , Cell Differentiation/immunology , Oncostatin M/metabolism , Signal Transduction , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/cytology , Intra-Abdominal Fat/immunology , Stromal Cells/metabolism , Mice, Inbred C57BL , Coculture Techniques , Adipogenesis , Cells, Cultured , Male , Adipose Tissue/metabolism , Adipose Tissue/cytology , Culture Media, Conditioned/pharmacology
10.
Cell ; 174(2): 285-299.e12, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29887374

ABSTRACT

Visceral adipose tissue (VAT) hosts a population of regulatory T (Treg) cells, with a unique phenotype, that controls local and systemic inflammation and metabolism. Generation of a T cell receptor transgenic mouse line, wherein VAT Tregs are highly enriched, facilitated study of their provenance, dependencies, and activities. We definitively established a role for T cell receptor specificity, uncovered an unexpected function for the primordial Treg transcription-factor, Foxp3, evidenced a cell-intrinsic role for interleukin-33 receptor, and ordered these dependencies within a coherent scenario. Genesis of the VAT-Treg phenotype entailed a priming step in the spleen, permitting them to exit the lymphoid organs and surveil nonlymphoid tissues, and a final diversification process within VAT, in response to microenvironmental cues. Understanding the principles of tissue-Treg biology is a prerequisite for precision-targeting strategies.


Subject(s)
Intra-Abdominal Fat/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes, Regulatory/metabolism , Animals , Chromatin Assembly and Disassembly , Forkhead Transcription Factors/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Intra-Abdominal Fat/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , PPAR gamma/genetics , PPAR gamma/metabolism , Phenotype , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Interleukin/metabolism , Single-Cell Analysis , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Transcriptome
11.
Immunity ; 56(4): 829-846.e8, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36822206

ABSTRACT

Specific microbial signals induce the differentiation of a distinct pool of RORγ+ regulatory T (Treg) cells crucial for intestinal homeostasis. We discovered highly analogous populations of microbiota-dependent Treg cells that promoted tissue regeneration at extra-gut sites, notably acutely injured skeletal muscle and fatty liver. Inflammatory meditators elicited by tissue damage combined with MHC-class-II-dependent T cell activation to drive the accumulation of gut-derived RORγ+ Treg cells in injured muscle, wherein they regulated the dynamics and tenor of early inflammation and helped balance the proliferation vs. differentiation of local stem cells. Reining in IL-17A-producing T cells was a major mechanism underlying the rheostatic functions of RORγ+ Treg cells in compromised tissues. Our findings highlight the importance of gut-trained Treg cell emissaries in controlling the response to sterile injury of non-mucosal tissues.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , T-Lymphocytes, Regulatory , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Mice, Inbred C57BL
12.
Cell ; 168(6): 1135-1148.e12, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28262351

ABSTRACT

Investigation of host-environment interactions in the gut would benefit from a culture system that maintained tissue architecture yet allowed tight experimental control. We devised a microfabricated organ culture system that viably preserves the normal multicellular composition of the mouse intestine, with luminal flow to control perturbations (e.g., microbes, drugs). It enables studying short-term responses of diverse gut components (immune, neuronal, etc.). We focused on the early response to bacteria that induce either Th17 or RORg+ T-regulatory (Treg) cells in vivo. Transcriptional responses partially reproduced in vivo signatures, but these microbes elicited diametrically opposite changes in expression of a neuronal-specific gene set, notably nociceptive neuropeptides. We demonstrated activation of sensory neurons by microbes, correlating with RORg+ Treg induction. Colonic RORg+ Treg frequencies increased in mice lacking TAC1 neuropeptide precursor and decreased in capsaicin-diet fed mice. Thus, differential engagement of the enteric nervous system may partake in bifurcating pro- or anti-inflammatory responses to microbes.


Subject(s)
Clostridium/growth & development , Intestines/growth & development , Intestines/microbiology , Organ Culture Techniques , Animals , Clostridium/classification , Clostridium/physiology , Intestines/cytology , Mice , Symbiosis
13.
Cell ; 168(5): 928-943.e11, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28215708

ABSTRACT

Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Adaptive Immunity , Animals , Bacterial Physiological Phenomena , Gastrointestinal Tract/cytology , Gastrointestinal Tract/physiology , Germ-Free Life , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Symbiosis
14.
Immunity ; 55(8): 1354-1369.e8, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35926508

ABSTRACT

FoxP3 is an essential transcription factor (TF) for immunologic homeostasis, but how it utilizes the common forkhead DNA-binding domain (DBD) to perform its unique function remains poorly understood. We here demonstrated that unlike other known forkhead TFs, FoxP3 formed a head-to-head dimer using a unique linker (Runx1-binding region [RBR]) preceding the forkhead domain. Head-to-head dimerization conferred distinct DNA-binding specificity and created a docking site for the cofactor Runx1. RBR was also important for proper folding of the forkhead domain, as truncation of RBR induced domain-swap dimerization of forkhead, which was previously considered the physiological form of FoxP3. Rather, swap-dimerization impaired FoxP3 function, as demonstrated with the disease-causing mutation R337Q, whereas a swap-suppressive mutation largely rescued R337Q-mediated functional impairment. Altogether, our findings suggest that FoxP3 can fold into two distinct dimerization states: head-to-head dimerization representing functional specialization of an ancient DBD and swap dimerization associated with impaired functions.


Subject(s)
Core Binding Factor Alpha 2 Subunit , T-Lymphocytes, Regulatory , Core Binding Factor Alpha 2 Subunit/genetics , DNA , Dimerization , Forkhead Transcription Factors/metabolism , Homeostasis
15.
Cell ; 164(3): 564-78, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824662

ABSTRACT

Type 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN and revealed underlying changes in chromatin configuration. We combined 1,398 human and mouse datasets to computationally infer ISG modules and their regulators, validated by genetic analysis in both species. Some ISGs are controlled by Stat1/2 and Irf9 and the ISRE DNA motif, but others appeared dependent on non-canonical factors. This regulatory framework helped to interpret JAK1 blockade pharmacology, different clusters being affected under tonic or IFN-stimulated conditions, and the IFN signatures previously associated with human diseases, revealing unrecognized subtleties in disease footprints, as affected by human ancestry.


Subject(s)
Gene Regulatory Networks , Interferon Type I/immunology , Interferon Type I/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Datasets as Topic , Humans , Janus Kinases/metabolism , Mice , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/metabolism
16.
Nat Immunol ; 19(3): 291-301, 2018 03.
Article in English | MEDLINE | ID: mdl-29434354

ABSTRACT

CD4+ T regulatory cells (Treg) are central to immune homeostasis, their phenotypic heterogeneity reflecting the diverse environments and target cells that they regulate. To understand this heterogeneity, we combined single-cell RNA-seq, activation reporter and T cell receptor (TCR) analysis to profile thousands of Treg or conventional CD4+FoxP3- T cells (Tconv) from mouse lymphoid organs and human blood. Treg and Tconv pools showed areas of overlap, as resting 'furtive' Tregs with overall similarity to Tconvs or as a convergence of activated states. All Tregs expressed a small core of FoxP3-dependent transcripts, onto which additional programs were added less uniformly. Among suppressive functions, Il2ra and Ctla4 were quasiconstant, inhibitory cytokines being more sparsely distributed. TCR signal intensity did not affect resting/activated Treg proportions but molded activated Treg programs. The main lines of Treg heterogeneity in mice were strikingly conserved in human blood. These results reveal unexpected TCR-shaped states of activation, providing a framework to synthesize previous observations of Treg heterogeneity.


Subject(s)
Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Lymphocyte Activation/immunology , Mice , Phenotype , Transcriptome
17.
Nat Immunol ; 19(6): 645, 2018 06.
Article in English | MEDLINE | ID: mdl-29725080

ABSTRACT

In the version of this article initially published, the Supplementary Note was missing. The Supplementary Note has now been provided online and is cited in the Methods section of the article. The error has been corrected in the HTML and PDF version of the article.

18.
Immunity ; 54(3): 499-513.e5, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691135

ABSTRACT

The immune and enteric nervous (ENS) systems monitor the frontier with commensal and pathogenic microbes in the colon. We investigated whether FoxP3+ regulatory T (Treg) cells functionally interact with the ENS. Indeed, microbe-responsive RORγ+ and Helios+ subsets localized in close apposition to nitrergic and peptidergic nerve fibers in the colon lamina propria (LP). Enteric neurons inhibited in vitro Treg (iTreg) differentiation in a cell-contact-independent manner. A screen of neuron-secreted factors revealed a role for interleukin-6 (IL-6) in modulating iTreg formation and their RORγ+ proportion. Colonization of germfree mice with commensals, especially RORγ+ Treg inducers, broadly diminished colon neuronal density. Closing the triangle, conditional ablation of IL-6 in neurons increased total Treg cells but decreased the RORγ+ subset, as did depletion of two ENS neurotransmitters. Our findings suggest a regulatory circuit wherein microbial signals condition neuronal density and activation, thus tuning Treg cell generation and immunological tolerance in the gut.


Subject(s)
Enteric Nervous System/immunology , Interleukin-6/metabolism , Intestines/immunology , Neurons/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Gastrointestinal Microbiome , Interleukin-6/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurotransmitter Agents/genetics , Neurotransmitter Agents/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phenotype
19.
Nature ; 628(8007): 400-407, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480882

ABSTRACT

AIRE is an unconventional transcription factor that enhances the expression of thousands of genes in medullary thymic epithelial cells and promotes clonal deletion or phenotypic diversion of self-reactive T cells1-4. The biological logic of AIRE's target specificity remains largely unclear as, in contrast to many transcription factors, it does not bind to a particular DNA sequence motif. Here we implemented two orthogonal approaches to investigate AIRE's cis-regulatory mechanisms: construction of a convolutional neural network and leveraging natural genetic variation through analysis of F1 hybrid mice5. Both approaches nominated Z-DNA and NFE2-MAF as putative positive influences on AIRE's target choices. Genome-wide mapping studies revealed that Z-DNA-forming and NFE2L2-binding motifs were positively associated with the inherent ability of a gene's promoter to generate DNA double-stranded breaks, and promoters showing strong double-stranded break generation were more likely to enter a poised state with accessible chromatin and already-assembled transcriptional machinery. Consequently, AIRE preferentially targets genes with poised promoters. We propose a model in which Z-DNA anchors the AIRE-mediated transcriptional program by enhancing double-stranded break generation and promoter poising. Beyond resolving a long-standing mechanistic conundrum, these findings suggest routes for manipulating T cell tolerance.


Subject(s)
AIRE Protein , DNA, Z-Form , Immune Tolerance , T-Lymphocytes , Thymus Gland , Animals , Mice , AIRE Protein/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA, Z-Form/chemistry , DNA, Z-Form/genetics , DNA, Z-Form/metabolism , Epithelial Cells/metabolism , Genetic Variation , Neural Networks, Computer , NF-E2-Related Factor 2/metabolism , Promoter Regions, Genetic , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thymus Gland/cytology , Transcription, Genetic , Female
20.
Nat Immunol ; 18(3): 263-273, 2017 03.
Article in English | MEDLINE | ID: mdl-28135252

ABSTRACT

Aire is a transcription factor that controls T cell tolerance by inducing the expression of a large repertoire of genes specifically in thymic stromal cells. It interacts with scores of protein partners of diverse functional classes. We found that Aire and some of its partners, notably those implicated in the DNA-damage response, preferentially localized to and activated long chromatin stretches that were overloaded with transcriptional regulators, known as super-enhancers. We also identified topoisomerase 1 as a cardinal Aire partner that colocalized on super-enhancers and was required for the interaction of Aire with all of its other associates. We propose a model that entails looping of super-enhancers to efficiently deliver Aire-containing complexes to local and distal transcriptional start sites.


Subject(s)
Chromatin Assembly and Disassembly , DNA Topoisomerases, Type I/metabolism , Enhancer Elements, Genetic/physiology , T-Lymphocytes/physiology , Thymus Gland/physiology , Transcription Factors/metabolism , Transcriptional Activation , Animals , Autoimmunity , DNA Damage/genetics , DNA Repair/genetics , DNA Topoisomerases, Type I/genetics , Epigenesis, Genetic , Gene Regulatory Networks , HEK293 Cells , Humans , Immune Tolerance , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Transcription Factors/genetics , AIRE Protein
SELECTION OF CITATIONS
SEARCH DETAIL