Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(38): 9391-9396, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29735677

ABSTRACT

The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.


Subject(s)
Biophysical Phenomena , Models, Theoretical , Motion , Thermodynamics , Algorithms , Catenanes/chemistry , Diffusion , Electrochemistry , Kinetics , Molecular Dynamics Simulation , Rotaxanes/chemistry
2.
Org Biomol Chem ; 18(3): 431-440, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31850445

ABSTRACT

Amines are ubiquitous in the chemical industry and are present in a wide range of biological processes, motivating the development of amine-sensitive sensors. There are many turn-on amine sensors, however there are no examples of turn-on sensors that utilize the amine's ability to react by single electron transfer (SET). We investigated a new turn-on amine probe with a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore. BODIPY fluorescence is first preprogrammed into an off state by internal photoinduced electron transfer (PET) to an electron-deficient quinolinium ring, resulting in fluorescence quenching. At low concentrations of aliphatic amine (0 to 10 mM), this PET pathway is shut down by external SET from the amine to the photoexcited charge-transfer state of the probe and the fluorescence is turned on. At high concentrations of amine (50 mM to 1 M), we observed collisional quenching of the BODIPY fluorescence. The probe is selective for aliphatic amines over aromatic amines, and aliphatic thiols or alcohols. The three molecular processes modulate the BODIPY fluorescence in a multi-mechanistic way with two of them producing a direct response to amine concentrations. The totality of the three molecular processes produced the first example of a multi-state and dose-responsive amine sensor.


Subject(s)
Amines/analysis , Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Quinolinium Compounds/chemistry , Boron Compounds/chemical synthesis , Density Functional Theory , Fluorescence , Fluorescent Dyes/chemical synthesis , Models, Chemical , Quinolinium Compounds/chemical synthesis , Spectrometry, Fluorescence/methods
3.
J Am Chem Soc ; 138(45): 15057-15065, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27934211

ABSTRACT

Encapsulation of unstable guests is a powerful way to enhance their stability. The lifetimes of organic anions and their radicals produced by reduction are typically short on account of reactivity with oxygen while their larger sizes preclude use of traditional anion receptors. Here we demonstrate the encapsulation and noncovalent stabilization of organic radical anions by C-H hydrogen bonding in π-stacked pairs of cyanostar macrocycles having large cavities. Using electrogenerated tetrazine radical anions, we observe significant extension of their lifetimes, facile molecular switching, and extremely large stabilization energies. The guests form threaded pseudorotaxanes. Complexation extends the radical lifetimes from 2 h to over 20 days without altering its electronic structure. Electrochemical studies show tetrazines thread inside a pair of cyanostar macrocycles following voltage-driven reduction (+e-) of the tetrazine at -1.00 V and that the complex disassembles after reoxidation (-e-) at -0.05 V. This reoxidation is shifted 830 mV relative to the free tetrazine radical indicating it is stabilized by an unexpectedly large -80 kJ mol-1. The stabilization is general as shown using a dithiadiazolyl anion. This finding opens up a new approach to capturing and studying unstable anions and a radical anions when encapsulated by size-complementary anion receptors.

4.
Inorg Chem ; 55(8): 3767-76, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27050829

ABSTRACT

The existence of two rings in [3]pseudorotaxanes presents opportunities for those rings to undergo double switching and cooperative mechanical coupling. To investigate this capability, we identified a new strategy for bringing two rings into contact with each other and conducted mechanistic studies to reveal their kinetic cooperativity. A redox-active tetrazine ligand bearing two binding sites was selected to allow for two mobile copper(I) macrocycle ring moieties to come together. To realize this switching modality, ligands were screened against their ability to serve as stations on which the rings are initially parked, ultimately identifying 5,5'-dimethyl-2,2'-bipyridine. The kinetics of switching a macrocycle in a single-site [2]pseudorotaxane between bipyridine and single-site tetrazine stations were examined using electrochemistry. The forward movement was rate-limited by the bimolecular reaction between reduced tetrazine and bipyridine [2]pseudorotaxane. Two bipyridines were then used with a double-site tetrazine to verify double switching of two rings. Our results indicated stepwise movements, with the first ring moving 4 times more frequently (faster) than the second. While this behavior is indicative of anticooperative kinetics, positive thermodynamic cooperativity sets the two rings in motion even though just one tetrazine is reduced with one electron. Double switching in this [3]pseudorotaxane uniquely demonstrates how a series of independent thermodynamic states and kinetic paths govern an apparently simple mechanical motion.

5.
J Am Chem Soc ; 136(17): 6373-84, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24746239

ABSTRACT

Mechanistic understanding of the translational movements in molecular switches is essential for designing machine-like prototypes capable of following set pathways of motion. To this end, we demonstrated that increasing the station-to-station distance will speed up the linear movements forward and slow down the movements backward in a homologous series of bistable rotaxanes. Four redox-active rotaxanes, which drove a cyclobis(paraquat-p-phenylene) (CBPQT(4+)) mobile ring between a tetrathiafulvalene (TTF) station and an oxyphenylene station, were synthesized with only variations to the lengths of the glycol linker connecting the two stations (n = 5, 8, 11, and 23 atoms). We undertook the first mechanistic study of the full cycle of motion in this class of molecular switch using cyclic voltammetry. The kinetics parameters (k, ΔG(‡)) of switching were determined at different temperatures to provide activation enthalpies (ΔH(‡)) and entropies (ΔS(‡)). Longer glycol linkers led to modest increases in the forward escape (t(1/2) = 60 to <7 ms). The rate-limiting step involves movement of the tetracationic CBPQT(4+) ring away from the singly oxidized TTF(+) unit by overcoming one of the thiomethyl (SMe) speed bumps before proceeding on to the secondary oxyphenylene station. Upon reduction, however, the return translational movement of the CBPQT(4+) ring from the oxyphenylene station back to the neutral TTF station was slowed considerably by the longer linkers (t(1/2) = 1.4 to >69 s); though not because of a diffusive walk. The reduced rate of motion backward depended on folded structures that were only present with longer linkers.


Subject(s)
Heterocyclic Compounds/chemistry , Paraquat/chemistry , Rotaxanes/chemistry , Kinetics , Motion , Oxidation-Reduction , Thermodynamics
6.
Dalton Trans ; 43(17): 6513-24, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24623103

ABSTRACT

An unexpected doubling in redox storage emerging from a new pincer ligand upon bis-ligation of iron(ii) is described. When tetrazine arms are present at the two ortho positions of pyridine, the resulting bis-tetrazinyl pyridine (btzp) pincer ligand displays a single one-electron reduction at ca. -0.85 V vs. Ag/AgCl. Complexation to iron, giving the cation Fe(btzp)2(2+), shows no oxidation but four reduction waves in cyclic voltammetry instead of the two expected for the two constituent ligands. Mossbauer, X-ray diffraction and NMR studies show the iron species to contain low spin Fe(ii), but with evidence of back donation from iron to the pincer ligands. CV and UV-Vis spectroelectrochemistry, as well as titration studies as monitored by CV, electronic spectra and EPR reveal the chemical reversibility of forming the reduced species. DFT and EPR studies show varying degrees of delocalization of unpaired spin in different species, including that of a btzp(-1) radical anion, partnered with various cations.

SELECTION OF CITATIONS
SEARCH DETAIL