Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood ; 134(14): 1159-1175, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31366618

ABSTRACT

Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hematopoiesis , LIM Domain Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Acetylation , Animals , Cells, Cultured , HEK293 Cells , Humans , Leukopoiesis , Mice , Models, Molecular , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Zebrafish
2.
Haematologica ; 105(3): 598-609, 2020 03.
Article in English | MEDLINE | ID: mdl-31248972

ABSTRACT

A Autosomal-dominant ELANE mutations are the most common cause of severe congenital neutropenia. Although the majority of congenital neutropenia patients respond to daily granulocyte colony stimulating factor, approximately 15 % do not respond to this cytokine at doses up to 50 µg/kg/day and approximately 15 % of patients will develop myelodysplasia or acute myeloid leukemia. "Maturation arrest," the failure of the marrow myeloid progenitors to form mature neutrophils, is a consistent feature of ELANE associated congenital neutropenia. As mutant neutrophil elastase is the cause of this abnormality, we hypothesized that ELANE associated neutropenia could be treated and "maturation arrest" corrected by a CRISPR/Cas9-sgRNA ribonucleoprotein mediated ELANE knockout. To examine this hypothesis, we used induced pluripotent stem cells from two congenital neutropenia patients and primary hematopoietic stem and progenitor cells from four congenital neutropenia patients harboring ELANE mutations as well as HL60 cells expressing mutant ELANE We observed that granulocytic differentiation of ELANE knockout induced pluripotent stem cells and primary hematopoietic stem and progenitor cells were comparable to healthy individuals. Phagocytic functions, ROS production, and chemotaxis of the ELANE KO (knockout) neutrophils were also normal. Knockdown of ELANE in the mutant ELANE expressing HL60 cells also allowed full maturation and formation of abundant neutrophils. These observations suggest that ex vivo CRISPR/Cas9 RNP based ELANE knockout of patients' primary hematopoietic stem and progenitor cells followed by autologous transplantation may be an alternative therapy for congenital neutropenia.


Subject(s)
Hematopoietic Stem Cell Transplantation , Induced Pluripotent Stem Cells , Neutropenia , CRISPR-Cas Systems , Congenital Bone Marrow Failure Syndromes , Humans , Mutation , Neutropenia/congenital , Neutropenia/genetics
3.
Exp Hematol ; 71: 51-60, 2019 03.
Article in English | MEDLINE | ID: mdl-30615903

ABSTRACT

We describe the establishment of an embryoid-body-based protocol for hematopoietic/myeloid differentiation of human induced pluripotent stem cells that allows the generation of CD34+ cells or mature myeloid cells in vitro. Using this model, we were able to recapitulate the defective granulocytic differentiation in patients with severe congenital neutropenia (CN), an inherited preleukemia bone marrow failure syndrome. Importantly, in vitro maturation arrest of granulopoiesis was associated with an elevated unfolded protein response (UPR) and enhanced expression of the cell cycle inhibitor p21. Consistent with this, we found that CD34+ cells of CN patients were highly susceptible to DNA damage and showed diminished DNA repair. These observations suggest that targeting the UPR pathway or inhibiting DNA damage might protect hematopoietic cells of CN patients from leukemogenic transformation, at least to some extent.


Subject(s)
Cell Transformation, Neoplastic/metabolism , DNA Damage , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Leukemia/etiology , Models, Biological , Neutropenia/congenital , Unfolded Protein Response , Antigens, CD34/metabolism , Biomarkers , Cells, Cultured , Cellular Reprogramming , Congenital Bone Marrow Failure Syndromes , Endoplasmic Reticulum Stress , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Induced Pluripotent Stem Cells/pathology , Leukemia/metabolism , Leukemia/pathology , Neutropenia/etiology , Neutropenia/metabolism , Neutropenia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL