Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Radiat Environ Biophys ; 63(2): 215-262, 2024 May.
Article in English | MEDLINE | ID: mdl-38664268

ABSTRACT

In the present research, we have developed a model-based crisp logic function statistical classifier decision support system supplemented with treatment planning systems for radiation oncologists in the treatment of glioblastoma multiforme (GBM). This system is based on Monte Carlo radiation transport simulation and it recreates visualization of treatment environments on mathematical anthropomorphic brain (MAB) phantoms. Energy deposition within tumour tissue and normal tissues are graded by quality audit factors which ensure planned dose delivery to tumour site thereby minimising damages to healthy tissues. The proposed novel methodology predicts tumour growth response to radiation therapy from a patient-specific medicine quality audit perspective. Validation of the study was achieved by recreating thirty-eight patient-specific mathematical anthropomorphic brain phantoms of treatment environments by taking into consideration density variation and composition of brain tissues. Dose computations accomplished through water phantom, tissue-equivalent head phantoms are neither cost-effective, nor patient-specific customized and is often less accurate. The above-highlighted drawbacks can be overcome by using open-source Electron Gamma Shower (EGSnrc) software and clinical case reports for MAB phantom synthesis which would result in accurate dosimetry with due consideration to the time factors. Considerable dose deviations occur at the tumour site for environments with intraventricular glioblastoma, haematoma, abscess, trapped air and cranial flaps leading to quality factors with a lower logic value of 0. Logic value of 1 depicts higher dose deposition within healthy tissues and also leptomeninges for majority of the environments which results in radiation-induced laceration.


Subject(s)
Brain Neoplasms , Glioblastoma , Monte Carlo Method , Glioblastoma/radiotherapy , Humans , Brain Neoplasms/radiotherapy , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiation Oncologists , Decision Support Systems, Clinical , Radiotherapy Dosage
2.
Rep Pract Oncol Radiother ; 22(5): 396-401, 2017.
Article in English | MEDLINE | ID: mdl-28831279

ABSTRACT

AIM: To determine the systematic error (∑), random error (σ) and derive PTV margin at different levels of the target volumes in Nasopharyngeal Cancer (NPC). MATERIALS AND METHODS: A retrospective offline review was done for patients who underwent IMRT for NPC from June 2015 to May 2016 at our institution. Alternate day kV images were matched with digitally reconstructed radiographs to know the setup errors. All radiographs were matched at three levels - the clivus, third cervical (C3) and sixth cervical (C6) vertebra. The shifts in positions along the vertical, longitudinal and lateral axes were noted and the ∑ and σ at three levels were calculated. PTV margins were derived using van Herk's formula. RESULTS: Twenty patients and 300 pairs of orthogonal portal films were reviewed. The ∑ for the clivus, C3 and C6 along vertical, longitudinal and lateral directions were 1.6 vs. 1.8 vs. 2 mm; 1.2 vs. 1.4 vs. 1.4 mm and 0.9 vs. 1.6 and 2.3 mm, respectively. Similarly, the random errors were 1.1 vs. 1.4 vs. 1.8 mm; 1.1 vs. 1.2 vs. 1.2 mm and 1.2 vs. 1.3 vs. 1.6 mm. The PTV margin at the clivus was 4.4 mm along the vertical, 4 mm along the longitudinal direction and 3.2 m in the lateral direction. At the C3 level, it was 5.5 mm in the vertical, 5 mm in the lateral direction and 4.4 mm in the longitudinal direction. At the C6 level, it was 6.4 mm in the vertical, 6.9 mm in the lateral direction and 4.4 mm in the longitudinal direction. CONCLUSION: A differential margin along different levels of target may be necessary to adequately cover the target.

3.
Heliyon ; 10(7): e29032, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617949

ABSTRACT

Background: Medical image segmentation is a vital yet difficult job because of the multimodality of the acquired images. It is difficult to locate the polluted area before it spreads. Methods: This research makes use of several machine learning tools, including an artificial neural network as well as a random forest classifier, to increase the system's reliability of pulmonary nodule classification. Anisotropic diffusion filtering is initially used to remove noise from a picture. After that, a modified random walk method is used to get the region of interest inside the lung parenchyma. Finally, the features corresponding to the consistency of the picture segments are extracted using texture-based feature extraction for pulmonary nodules. The final stage is to identify and classify the pulmonary nodules using a classifier algorithm. Results: The studies employ cross-validation to demonstrate the validity of the diagnosis framework. In this instance, the proposed method is tested using CT scan information provided by the Lung Image Database Consortium. A random forest classifier showed 99.6 percent accuracy rate for detecting lung cancer, compared to a artificial neural network's 94.8 percent accuracy rate. Conclusions: Due to this, current research is now primarily concerned with identifying lung nodules and classifying them as benign or malignant. The diagnostic potential of machine learning as well as image processing approaches are enormous for the categorization of lung cancer.

4.
Curr Med Imaging ; 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37449711

ABSTRACT

OBJECTIVE: The objective of the research is to implement an advanced modified threshold segmentation and classification model for early and accurate detection of lung cancer from CT images. METHODS: Using the Support Vector Machines (SVM) classifier as well as the Artificial Neural Network (ANN) classifier, the authors propose using Modified adaptive threshold segmentation as a segmentation approach for cancer detection. Here, Lung Image Database Consortium (LIDC) datasets, a collection of CT scans, are used as the video frames in an investigation to authorize the recitation of the suggested technique. RESULTS: Both quantitative as well as qualitative analyses are used to analyze the segmentation function of the anticipated algorithm. Both the ANN and SVM classifiers used in the suggested technique for lung cancer diagnosis achieve world-record levels of accuracy, with the former achieving a 96.3% detection rate and the latter a 97% rate of accuracy. CONCLUSION: This innovation may have a major impact on the worldwide rate of lung cancer rate due to its ability to detect lung tumors in their earliest stages when they are most amenable to being avoided and treated. This method is useful because it provides more information and facilitates quick, precise decision-making for doctors diagnosing lung cancer in their patients.

5.
Heliyon ; 9(4): e15328, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37123913

ABSTRACT

Monte Carlo simulations of medical linear accelerator heads help in visualizing the energy spectrum and angular spread of photons and electrons, energy deposition, and scattering from each of the head components. Hence, the purpose of this study was to validate the Monte Carlo model of the Elekta synergy medical linear accelerator equipped with stereotactic radio surgical connical collimators. For this, the Elekta synergy medical linear accelerator was modelled using the EGSnrc Monte Carlo code. The model results were validated using the measured data. The primary electron beam parameters, beam size, and energy were tuned to match the measured data; a dose profile with a field size of 40 × 40 cm2 and percentage depth dose with a field size of 10 × 10 cm2 were matched during tuning. The validation of the modelled data with the measurement results was performed using gamma analysis, point dose, and field size comparisons. For small radiation fields, relative output factors were also compared. The gamma analysis revealed good agreement between the Monte Carlo modeling results and the measured data. A gamma pass rate of more than 95% was obtained for field sizes of 40 × 40 cm2 to 2 × 2 cm2 with gamma criteria of 1% and 1 mm for the dose difference (DD) and distance to agreement (DTA), respectively; this gamma pass rate was more than 98% for the corresponding values of 2% and 2 mm for the DD and DTA, respectively. A gamma pass rate of more than 99% was obtained for a percentage depth dose with 1 mm and 1% criteria. The field size was also in good agreement with the measurement results, and the maximum deviation observed was 1.1%. The stereotactic cone field also passed this analysis with a gamma pass rate of more than 98% for dose profiles and 99% for the percentage depth dose. The small field output factor exhibited a deviation of 4.3%, 3.4%, and 1.9% for field sizes of 5 mm, 7.5 mm, and 10 mm, respectively. Thus, the Monte Carlo model of the Elekta Linear accelerator was successfully validated. The validation of radio surgical cones passed the analysis in terms of the dose profiles and percentage depth dose. The small field relative output factors exhibited deviations of up to 4.3%, and to resolve this, detector-specific and field-specific correction factors must be derived.

6.
Phys Med ; 112: 102651, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37562233

ABSTRACT

Monitoring Radiotherapy Quality Assurance (QA) using Statistical Process Control (SPC) methods has gained wide acceptance. The significance of understanding the SPC methodologies has increased among the medical physics community with the release of Task Group (TG) reports from the American Association of Physicists in Medicine (AAPM) on patient-specific QA (PSQA) (TG-218) and Proton therapy QA (TG-224). Even though these reports recommend using SPC for QA analysis, physicists have ambiguities and doubts in choosing proper SPC tools and methodologies. This review article summarises the utilisation of SPC methods for different Radiotherapy QAs published in the literature, such as PSQA, routine Linac QA and patient positional verification. QA analysis using SPC could assist the user in distinguishing between 'special' and 'routine' sources of variations in the QA, which can aid in reducing actions on false positive QA results. For improved PSQA monitoring, machine-specific, site-specific, and technique-specific Tolerance Limits and Action Limits derived from a two-stage SPC-based approach can be used. Adopting a combination of Shewhart's control charts and time-weighted control charts for routine Linac QA monitoring could add more insights to the QA process. Incorporating SPC tools into existing image review modules or introducing new SPC software packages specifically designed for clinical use can significantly enhance the image review process. Proper selection and having adequate knowledge of SPC tools are essential for efficient QA monitoring, which is a function of the type of QA data available, and the magnitude of process drift to be monitored.

7.
Med Dosim ; 47(1): e7-e12, 2022.
Article in English | MEDLINE | ID: mdl-34740518

ABSTRACT

Stereotactic radiosurgery (SRS) is increasingly being used to manage solitary or multiple brain metastasis. This study aims to compare and validate Anisotropic Analytical Algorithm (AAA) and AcurosXB (AXB) algorithms of Eclipse Treatment Planning System (TPS) in RapidArc-based SRS plans of patients with solitary brain metastasis. Twenty patients with solitary brain metastasis who have been already treated with RapidArc SRS plans calculated using AAA plans were selected for this study. These plans were recalculated using AXB algorithm keeping the same arc orientations, multi-leaf collimator apertures, and monitor units. The two algorithms were compared for target coverage parameters, isodose volumes, plan quality metrics, dose to organs at risk and integral dose. The dose calculated by the TPS using AAA and AXB algorithms was validated against measured dose for all patient plans using an in-house developed cylindrical phantom. An Exradin A14SL ionization chamber was positioned at the center of this phantom to measure the in-field dose. NanoDot Optically Stimulated Luminescent Dosimeters (OSLDs) (Landauer Inc.) were placed at distances 3.0 cm, 4.0 cm, 5.0 cm, and 6.0 cm respectively from the center of the phantom to measure the non-target dose. In addition, the planar dose distribution was measured using amorphous silicon aS1000 Electronic Portal Imaging Device. The measured 2D dose distribution was compared against AAA and AXB estimated 2D distribution using gamma analysis. All results were tested for significance using the paired t-test at 5% level of significance. Significant differences between the AAA and AXB plans were found only for a few parameters analyzed in this study. In the experimental verification using cylindrical phantom, the difference between the AAA calculated dose and the measured dose was found to be highly significant (p < 0.001). However, the difference between the AXB calculated dose and the measured dose was not significant (p = 0.197). The difference between AAA/AXB calculated and measured at non-target locations was statistically insignificant at all four non-target locations and the dose calculated by both AAA and AXB algorithms shows a strong positive correlation with the measured dose. The results of the gamma analysis show that the AXB calculated planar dose is in better agreement with measurements compared to the AAA. Even though the results of the dosimetric comparison show that the differences are mostly not significant, the measurements show that there are differences between the two algorithms within the target volume. The AXB algorithm may be therefore more accurate in the dose calculation of VMAT plans for the treatment of small intracranial targets. For non-target locations either algorithm can be used for the estimation of dose accounting for their limitations in non-target dose estimations.


Subject(s)
Brain Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Algorithms , Brain Neoplasms/radiotherapy , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
8.
Med Dosim ; 47(3): 280-287, 2022.
Article in English | MEDLINE | ID: mdl-35690544

ABSTRACT

Volumetric Modulated Arc Therapy (VMAT) is an important modality for radical radiotherapy of all major treatment sites. This study aims to compare Analytical Anisotropic Algorithm (AAA) and the two dose-reporting modes of Acuros XB (AXB) algorithm -the dose to medium option (Dm) and the dose to water option (Dw) in Volumetric Modulated Arc Therapy (VMAT) of carcinoma lung and carcinoma prostate. We also compared the measured dose with Treatment Planning System calculated dose for AAA and the two dose reporting options of Acuros XB using Electronic Portal Imaging Device (EPID) and ArcCHECK phantom. Treatment plans of twenty patients each who have already undergone radiotherapy for cancer of lung and cancer of prostate were selected for the study. Three sets of VMAT plans were generated in Eclipse Treatment Planning System (TPS), one with AAA and two plans with Acuros-Dm and Acuros-Dw options. The Dose Volume Histograms (DVHs) were compared and analyzed for Planning Target Volume (PTV) and critical structures for all the plans. Verification plans were created for each plan and measured doses were compared with TPS calculated doses using EPID and ArcCHECK phantom for all the three algorithms. For lung plans, the mean dose to PTV in the AXB-Dw plans was higher by 1.7% and in the AXB-Dm plans by 0.66% when compared to AAA plans. For prostate plans, the mean dose to PTV in the AXB-Dw plans was higher by 3.0% and in the AXB-Dm plans by 1.6% when compared to AAA plans. There was no difference in the Conformity Index (CI) between AAA and AXB-Dm and between AAA and AXB-Dw plans for both sites. But the homogeneity worsened in AXB-Dw and AXB-Dm plans when compared to AAA plans for both sites. AXB-Dw calculated higher dose values for PTV and all the critical structures with significant differences with one or two exceptions. Point dose measurements in ArcCHECK phantom showed that AXB-Dm and AXB-Dw options showed very small deviations with measured dose distributions than AAA for both sites. Results of EPID QA also showed better pass rates for AXB-Dw and AXB-Dm than AAA for both sites when gamma analysis was done for 3%/3 mm and 2%/2 mm criteria. With reference to the results, it is always better to choose Acuros algorithm for dose calculations if it is available in the TPS. AXB-Dw plans showed very high dose values in the PTV when compared to AAA and AXB-Dm in both sites studied. Also, the volume of PTV receiving 107% dose was significantly high in AXB-Dw plans compared to AXB-Dm plans in sites involving high density bones. Considering the results of dosimetric comparison and QA measurements, it is always better to choose AXB-Dm algorithm for dose calculations for all treatment sites especially when high density bony structures and complex treatment techniques are involved. For patient specific QA purposes, choosing AXB-Dm or AXB-Dw does not make any significant difference between calculated and measured dose distributions.


Subject(s)
Carcinoma , Lung Neoplasms , Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Algorithms , Humans , Lung , Lung Neoplasms/radiotherapy , Male , Prostate , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
9.
Biomed Phys Eng Express ; 7(2)2021 02 15.
Article in English | MEDLINE | ID: mdl-33535198

ABSTRACT

A radiation field is considered small if its dimension is lower than the range of secondary electrons and the collimating devices partially occlude the source. Different detector types, such as unshielded diodes, diamond detectors, and small-volume ion chambers, are used for small-field measurements. Although the active volumes of these detectors are small, their non-water equivalent materials cause response variations. Herein, we aim to calculate the correction factors for our clinical detectors, EDGE detector (Sun Nuclear), 60017 diode (PTW), and CC01 ion chamber (IBA), for stereotactic radiosurgery cones of diameters of 5-15 mm in an Elekta Synergy linear accelerator using a Monte Carlo simulation. An Elekta Synergy linear accelerator treatment head was simulated using BEAMnrc Monte Carlo code as per the manufacturer specification. All three detectors were simulated as per the manufacturer specification. Three EGSnrc user codes were used for the detector simulation based on the detector geometry. The Monte Carlo model of the treatment head was validated against the measured data for a standard field size of 10 × 10 cm2. The off-axis profile, percentage depth dose, and tissue phantom ratioTPR1020were verified in the validation procedure. The measured and Monte Carlo calculated relative output factors (ROFs) were not consistent. In a 5 mm field size, EDGE diode overestimated the ROF by 7.06%, and 60017 diode to 4.611%. In a 7.5 mm field size, the variations were 4.295% and 3.691% for EDGE and 60017 diodes, respectively. CC01 ion chamber under-responded up to 10% because of its low-density active volume. The maximum corrections were obtained in the smallest field size, which were 0.939(0.007), 0.962(0.006), and 1.117(0.008) for EDGE, PTW T60017, and CC01 detectors, respectively. After applying the Monte Carlo calculated correction factor to the measured ROF, it became consistent with the Monte Carlo calculated ROF.


Subject(s)
Radiosurgery , Computer Simulation , Monte Carlo Method , Particle Accelerators , Radiometry
10.
Med Dosim ; 45(3): 225-234, 2020.
Article in English | MEDLINE | ID: mdl-32001069

ABSTRACT

Stereotactic radiosurgery/radiotherapy (SRS/SRT) is a hypofractionated treatment where accurate dose calculation is of prime importance. The accuracy of the dose calculation depends on the treatment planning algorithm. This study is a retrospective dosimetric comparison of iPlanⓇ Monte Carlo (MC) and Pencil Beam (PB) algorithms in SRS/SRT plans of cranial arteriovenous malformations (AVMs). PB plans of 60 AVM patients who were already treated using 6 MV photons from a linear accelerator were selected and divided into 2 groups. Group-I consists of 30 patients who have undergone embolization procedure with high density OnyxⓇ prior to radiosurgery whereas Group-II had 30 patients who did not have embolization. These plans were recalculated with MC algorithm while keeping parameters like beam orientation, multileaf collimator (MLC) positions, MLC margin, prescription dose, and monitor units constant. Several treatment coverage parameters, isodose volumes, plan quality metrics, dose to organs at risk, and integral dose were used for comparing the 2 algorithms. The isodose distribution generated by the 2 algorithms was also compared with gamma analysis using 1%/1 mm criterion. The difference between the 2 groups as well as the differences in dose calculation by PB and MC algorithms were tested for significance using independent t-test and paired t-test respectively at 5% level of significance. The results of the independent t-test showed that there is no significant difference between the Group-I and Group-II patients for PB as well as MC algorithm due to the presence of high density embolization material. However, results of the paired t-test showed that the differences between the PB and MC algorithms were significant for several parameters analyzed in both groups of patients. The gamma analysis results also showed differences in the dose calculated by the 2 algorithms especially in the low dose regions. The significant differences between the 2 algorithms are probably due to the incorrect representation of the loss of lateral charged particle equilibrium and lateral broadening of small photon beams by PB algorithm. MC algorithms are generally considered not essential for dose calculations for target volumes located in the brain. This study demonstrates PB algorithm may not be sufficiently accurate to predict dose distributions for small fields where there is loss of LCPE. The lateral broadening due to the loss of LCPE as predicted by the MC algorithm could be the main reason for significant differences in the parameters compared. Hence, an accurate MC algorithm if available may prove valuable for intracranial SRS treatment planning of such benign lesions where the long life expectancy of patients makes accurate dosimetry critical.


Subject(s)
Algorithms , Intracranial Arteriovenous Malformations/surgery , Radiation Dosage , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Adult , Humans , Monte Carlo Method , Particle Accelerators , Radiometry , Retrospective Studies
11.
Biomed Phys Eng Express ; 6(4): 045006, 2020 05 14.
Article in English | MEDLINE | ID: mdl-33444267

ABSTRACT

More often the embolic materials in the brain create artefacts in the planning CT images that could lead to a dose variation in planned and delivered dose. The aim of the study was to evaluate the dosimetric effect of artefacts generated by the Onyx™ embolization material during Stereotactic Radiosurgery/Radiotherapy (SRS/SRT) planning. An in-house made novel Polymethyl Methacrylate (PMMA) head phantom (specially designed for SRS/SRT plans) was used for this purpose. For the evaluation process, we have created concentric ring structures around the central Onyx materials on both the CT sets (with and without Onyx material). The verification plans were generated using different algorithms namely Analytical Anisotropic Algorithm (AAA), Acuros XB and Monaco based Monte Carlo on both CT sets. Mean integral dose over the region of interest were calculated in both CT sets. The dosimetric results shows, due to the presence of Onyx material, relative variation in mean integral dose to the proximal structure (Ring 1) were -4.02%, -2.98%, and -2.49% for Monte Carlo, Acuros XB, and AAA respectively. Observed variations are attributed to the presence of artefacts due to Onyx material. Artefacts influence the accuracy of dose calculation during the planning. All the calculation algorithms are not equally capable to account such variations. Special cares are to be taken while choosing the calculation algorithms as it impacts the results of treatment outcome.


Subject(s)
Radiometry/instrumentation , Radiosurgery/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Anisotropy , Artifacts , Equipment Design , Humans , Monte Carlo Method , Phantoms, Imaging , Polymethyl Methacrylate/chemistry , Radiometry/methods , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results , Tomography, X-Ray Computed
12.
J Med Phys ; 45(2): 66-70, 2020.
Article in English | MEDLINE | ID: mdl-32831488

ABSTRACT

PURPOSE: The present study aims to design and fabricate a novel, versatile, and cost-effective Polymethyl Methacrylate (PMMA) head phantom for the dosimetric pretreatment verification of radiotherapy (RT) treatment plans. MATERIALS AND METHODS: The head phantom designing involves slice-wise modeling of an adult head using PMMA. The phantom has provisions to hold detectors such as ionization chambers of different sizes, Gafchromic films, gel dosimeter, and optically stimulated luminescence dosimeter. For the point dose verification purpose, 15 volumetric modulated arc therapy patient plans were selected, and doses were measured using a CC13 ionization chamber. The percentage gamma passing rate was calculated for acceptance criteria 3%/3 mm and 2%/2 mm using OmniPro I'mRT film QA software, and Gafchromic EBT3 films were used for 2D planar dose verification. RESULTS: Treatment planning system calculated, and the measured point doses showed a percentage deviation ranged from 0.26 to 1.92. The planar dose fluence measurements, for set acceptance criteria of 3%/3 mm and 2%/2 mm, percentages of points having gamma value <1 were in the range of 99.17 ± 0.25 to 99.88 ± 0.15 and 93.16 ± 0.38 to 98.89 ± 0.23, respectively. Measured dose verification indices were within the acceptable limit. CONCLUSIONS: The dosimetric study reveals that head phantom can be used for routine pretreatment verification for the cranial RT, especially for stereotactic radiosurgery/RT as a part of patient-specific quality assurance. The presently fabricated and validated phantom is novel, versatile, and cost-effective, and many institutes can afford it.

13.
J Cancer Res Ther ; 14(6): 1202-1206, 2018.
Article in English | MEDLINE | ID: mdl-30488830

ABSTRACT

PURPOSE: Glioblastoma (GBM) is characterized by early relapse and mortality. Treatment resistance could be a characteristic exhibited by pro-genitor neoplastic cells that reside in the subventricular zone (SVZ). This retrospective study was conducted to assess the correlation of SVZ doses and survival in patients with GBM. MATERIALS AND METHODS: Forty-seven patients with GBM treated with radiotherapy, concurrent and adjuvant temozolomide therapy, and whose dosimetry data were available were included. The ipsilateral and contralateral SVZs were delineated on co-registered magnetic resonance imaging-computed tomography images as a 5-mm margin along the lateral wall of the lateral ventricles. Median radiotherapy dose prescribed was 59.4 Gy. The mean ipsilateral, contralateral, and bilateral SVZ doses were 56.3 Gy (range 33-63 Gy), 50.4 Gy (range 23-79 Gy), and 52 Gy (28-69 Gy). The progression-free survival (PFS) and overall survival (OS) were calculated from the date of surgery to the date of radiologic and/or clinical progression and death/last follow-up, respectively. Survival probability was estimated using the Kaplan-Meier method. Log-rank test was used to test the significance between groups. Cox proportional hazards analyses were used to identify prognostic factors. RESULTS: At a median follow-up of 19 months, all patients had relapsed. Most recurrences were infield (n = 39). The median PFS and OS were 17 and 19 months, respectively. The PFS and OS at 2 years were 36.2% and 21.3%, respectively. Patients who received ipsilateral SVZ dose of ≥56 Gy appeared to have better but nonsignificant median PFS and OS. Patients receiving contralateral SVZ doses ≥50 Gy showed a similar trend. Only the number of adjuvant temozolomide (≥6 cycles) showed prognostic impact. CONCLUSION: This retrospective study indicated a trend toward improved-albeit nonsignificant-survival with higher dose to the ipsilateral and contralateral SVZs. A well-designed prospective randomized study is required to identify patients who would benefit from intentional SVZ targeting.


Subject(s)
Brain Neoplasms/mortality , Chemoradiotherapy/mortality , Glioblastoma/mortality , Lateral Ventricles/radiation effects , Adult , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Dacarbazine/therapeutic use , Female , Follow-Up Studies , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Male , Middle Aged , Prognosis , Radiotherapy Dosage , Retrospective Studies , Survival Rate
14.
J Med Phys ; 43(4): 214-220, 2018.
Article in English | MEDLINE | ID: mdl-30636846

ABSTRACT

AIM: Several plan quality metrics are available for the evaluation of stereotactic radiosurgery/radiotherapy plans. This is a retrospective analysis of 60 clinical treatment plans of arteriovenous malformation (AVM) patients to study clinical usefulness of selected plan quality metrics. MATERIALS AND METHODS: The treatment coverage parameters Radiation Therapy Oncology Group (RTOG) Conformity Index (CIRTOG), RTOG Quality of Coverage (QRTOG), RTOG Homogeneity Index (HIRTOG), Lomax Conformity Index (CILomax), Paddick's Conformity Index (CIPaddick), and dose gradient parameters Paddick's Gradient Index (GIPaddick) and Equivalent Fall-off Distance (EFOD) were calculated for the cohort of patients. Before analyzing patient plans, the influence of calculation grid size on selected plan quality metrics was studied on spherical targets. RESULTS: It was found that the plan quality metrics are independent of calculation grid size ≤2 mm. EFOD was found to increase linearly with increase in target volume, and a linear fit equation was obtained. CONCLUSIONS: The analysis shows that RTOG indices and EFOD would suffice for routine clinical radiosurgical treatment plan evaluation if a dose distribution is available for visual inspection.

15.
J Med Phys ; 43(4): 264-269, 2018.
Article in English | MEDLINE | ID: mdl-30636852

ABSTRACT

AIM: The aim of this study is to measure and compare the surface dose of treated breast and contralateral breast with the treatment planning system (TPS) calculated dose using calibrated optically stimulated luminescent dosimeter (OSLD) in an indigenous wax breast phantom. MATERIALS AND METHODS: Three-dimensional conformal plans were generated in eclipse TPS v. 13 to treat the left breast of a wax phantom for a prescribed dose of 200 cGy. The plans were calculated using anisotropic analytical algorithm (AAA) and Acuros algorithm with 1-mm grid size. Calibrated OSLDs were used to measure the surface dose of treated and contralateral breasts. RESULTS: Large differences were observed between measured and expected doses when OSLDs were read in "reading mode" compared to the "hardware mode." The consistency in the responses of OSLDs was better (deviation <±5%) in the "hardware mode." Reasonable agreement between TPS dose and measured dose was found in regions inside the treatment field of treated breast using OSLDs for both algorithms. OSLD measured doses and TPS doses, for the points where the angle of incidence was almost normal, were in good agreement compared to all other locations where the angle of incidence varied from 45° to 70°. The maximum deviation between measured doses and calculated doses with AAA and with Acuros were 2.2% and-12.38%, respectively, for planning target volume breast, and 76% and 77.51%, respectively, for the opposite breast. CONCLUSION: An independent calibration factor is required before using the OSLDs for in vivo dose measurements. With reference to measured doses using OSLD, the accuracy of skin dose estimation of TPS with AAA was better than with Acuros for both the breasts. In general, a reasonable agreement between TPS doses calculated using AAA and measured doses exists in regions inside treatment field, but unacceptable differences were observed for the points lateral to the opposite breast for both AAA and Acuros.

16.
J Med Phys ; 38(1): 22-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23531607

ABSTRACT

The present study is aimed at comparing the planning and delivery efficiency between three-dimensional conformal radiotherapy (3D-CRT), field-in-field, forward planned, intensity modulated radiotherapy (FIF-FP-IMRT), and inverse planned intensity modulated radiotherapy (IP-IMRT). Treatment plans of 20 patients with left-sided breast cancer, 10 post-mastectomy treated to a prescribed dose of 45 Gy to the chest wall in 20 fractions, and 10 post-breast-conserving surgery to a prescribed dose of 50 Gy to the whole breast in 25 fractions, with 3D-CRT were selected. The FiF-FP-IMRT plans were created by combining two open fields with three to four segments in two tangential beam directions. Eight different beam directions were chosen to create IP-IMRT plans and were inversely optimized. The homogeneity of dose to planning target volume (PTV) and the dose delivered to heart and contralateral breast were compared among the techniques in all the 20 patients. All the three radiotherapy techniques achieved comparable radiation dose delivery to PTV-95% of the prescribed dose covering > 95% of the breast PTV. The mean volume of PTV receiving 105% (V105) of the prescribed dose was 1.7% (range 0-6.8%) for IP-IMRT, 1.9% for FP-IMRT, and 3.7% for 3D-CRT. The homogeneity and conformity indices (HI and CI) were similar for 3D-CRT and FP-IMRT, whereas the IP-IMRT plans had better conformity index at the cost of less homogeneity. The 3D-CRT and FiF-FP-IMRT plans achieved similar sparing of critical organs. The low-dose volumes (V5Gy) in the heart and lungs were larger in IP-IMRT than in the other techniques. The value of the mean dose to the ipsilateral lung was higher for IP-IMRT than the values for with FiF-FP-IMRT and 3D-CRT. In the current study, the relative volume of contralateral breast receiving low doses (0.01, 0.6, 1, and 2Gy) was significantly lower for the FiF-FP-IMRT and 3D-CRT plans than for the IP-IMRT plan. Compared with 3D-CRT and IP-IMRT, FiF-FP-IMRT proved to be a simple and efficient planning technique for breast irradiation. It provided dosimetric advantages, significantly reducing the size of the hot spot and minimally improving the coverage of the target volume. In addition, it was felt that FiF-FP-IMRT required less planning time and easy field placements.

17.
J Med Phys ; 34(1): 48-51, 2009 Jan.
Article in English | MEDLINE | ID: mdl-20126566

ABSTRACT

Multiple fractions of High Dose Rate (HDR) brachytherapy along with external beam therapy is the common method of treatment for cancer of the uterine cervix. Urinary bladder and rectum are the organs at risk (OARs) that receive a significant dose during treatment. To reduce the dose to these organs, a majority of hospitals use vaginal gauze packing, as it is a simple, nontraumatic, and easy method. This article describes the design and development of an inflatable balloon that can be used along with the applicator as a substitute for gauze packing. The balloon has two parts-the bladder part (B-part) and the rectum part (R-part), both of them are independently inflatable. The selection of the material, its width, length, and thickness are described. A mould/former for making the balloon was designed. Polished steel was used as the mould. This was dipped in specially prepared natural rubber latex (NRL) solution several times; the layers were dried and stripped to get the balloon. The composition of NRL and the compounding recipe of the latex are also described. Physical tests like tensile strength, elongation at break, bursting volume, and radiation attenuation caused by the balloon, were checked. Biological tests for assessing type I and type IV allergies, like dermal irritation and skin irritation tests, were also done.

SELECTION OF CITATIONS
SEARCH DETAIL