Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Virol J ; 21(1): 109, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734674

ABSTRACT

BACKGROUND: Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS: Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-Ɵ induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-Ɵ induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS: SARS-CoV-2Ā N protein inhibited IFN-Ɵ induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-Ɵ expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION: SARS-CoV-2Ā N protein suppressed the induction of IFN-Ɵ by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.


Subject(s)
COVID-19 , MicroRNAs , RNA, Long Noncoding , Humans , A549 Cells , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , COVID-19/virology , COVID-19/immunology , Immune Evasion , Interferon-beta/genetics , Interferon-beta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphoproteins , RNA, Competitive Endogenous , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
2.
Mol Cell Biochem ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880861

ABSTRACT

Acute myocardial infarction is mainly caused by a lack of blood flood in the coronary artery. Angiopoietin-like protein 2 (ANGPTL2) induces platelet activation and thrombus formation in vitro through binding with immunoglobulin-like receptor B, an immunoglobulin superfamily receptor. However, the mechanism by which it regulates platelet function in vivo remains unclear. In this study, we investigated the role of ANGPTL2 during thrombosis in relationship with ST-segment elevation myocardial infarction (STEMI) with spontaneous recanalization (SR). In a cohort of 276 male and female patients, we measured plasma ANGPTL2 protein levels. Using male Angptl2-knockout and wild-type mice, we examined the inhibitory effect of Angptl2 on thrombosis and platelet activation both in vivo and ex vivo. We found that plasma and platelet ANGPTL2 levels were elevated in patients with STEMI with SR compared to those in non-SR (NSR) patients, and was an independent predictor of SR. Angptl2 deficiency accelerated mesenteric artery thrombosis induced by FeCl3 in Angptl2-/- compared to WT animals, promoted platelet granule secretion and aggregation induced by thrombin and collogen while purified ANGPTL2 protein supplementation reversed collagen-induced platelet aggregation. Angptl2 deficiency also increased platelet spreading on immobilized fibrinogen and clot contraction. In collagen-stimulated Angptl2-/- platelets, Src homology region 2 domain-containing phosphatase (Shp)1-Y564 and Shp2-Y580 phosphorylation were attenuated while Src, Syk, and Phospholipase CƎĀ³2 (PLCƎĀ³2) phosphorylation increased. Our results demonstrate that ANGPTL2 negatively regulated thrombus formation by activating ITIM which can suppress ITAM signaling pathway. This new knowledge provides a new perspective for designing future antiplatelet aggregation therapies.

3.
Arterioscler Thromb Vasc Biol ; 43(6): 1015-1030, 2023 06.
Article in English | MEDLINE | ID: mdl-37051931

ABSTRACT

BACKGROUND: AGK (acylglycerol kinase) was first identified as a mitochondrial transmembrane protein that exhibits a lipid kinase function. Recent studies have established that AGK promotes cancer growth and metastasis, enhances glycolytic metabolism and function fitness of CD8+ T cells, or regulates megakaryocyte differentiation. However, the role of AGK in platelet activation and arterial thrombosis remains to be elaborated. METHODS: We performed hematologic analysis using automated hematology analyzer and investigated platelets morphology by transmission electron microscope. We explored the role of AGK in platelet activation and arterial thrombosis utilizing transgenic mice, platelet functional experiments in vitro, and thrombosis models in vivo. We revealed the regulation effect of AGK on Talin-1 by coimmunoprecipitation, mass spectrometry, immunofluorescence, and Western blot. We tested the role of AGK on lipid synthesis of phosphatidic acid/lysophosphatidic acid and thrombin generation by specific Elisa kits. RESULTS: In this study, we found that AGK depletion or AGK mutation had no effect on the platelet average volumes, the platelet microstructures, or the expression levels of the major platelet membrane receptors. However, AGK deficiency or AGK mutation conspicuously decreased multiple aspects of platelet activation, including agonists-induced platelet aggregation, granules secretion, JON/A binding, spreading on Fg (fibrinogen), and clot retraction. AGK deficiency or AGK mutation also obviously delayed arterial thrombus formation but had no effect on tail bleeding time and platelet procoagulant function. Mechanistic investigation revealed that AGK may promote Talin-1Ser425 phosphorylation and affect the αIIbƟ3-mediated bidirectional signaling pathway. However, AGK does not affect lipid synthesis of phosphatidic acid/lysophosphatidic acid in platelets. CONCLUSIONS: AGK, through its kinase activity, potentiates platelet activation and arterial thrombosis by promoting Talin-1 Ser425 phosphorylation and affecting the αIIbƟ3-mediated bidirectional signaling pathway.


Subject(s)
Talin , Thrombosis , Animals , Mice , Blood Platelets/metabolism , CD8-Positive T-Lymphocytes/metabolism , Mice, Transgenic , Phosphatidic Acids/metabolism , Phosphatidic Acids/pharmacology , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Signal Transduction , Talin/genetics , Talin/metabolism , Talin/pharmacology , Thrombosis/pathology
4.
J Vasc Res ; 60(4): 204-212, 2023.
Article in English | MEDLINE | ID: mdl-37673049

ABSTRACT

OBJECTIVES: This study aimed to determine the function of Cx43 in the endothelial-to-mesenchymal transition (EndMT) process of endothelial cells (ECs) and to explore the potential signaling pathways underlying these functions. METHODS: ECs were extracted from rat aorta. ECs were transfected with Cx43 cDNA and Cx43 siRNA and then exposed to 5 or 12 dyne/cm2. Immunofluorescence staining was used to detect the expression of SM22α, Cx43, and acetylated α-tubulin in ECs. Western blotting was used to detect the protein expression of α-SMA, CD31, Cx43, H1-calponin, Ift88, and p-smad3 in ECs. RESULTS: The expression of αSMA, SM22α, and Cx43 was significantly increased, and CD31 was markedly decreased in ECs treated with laminar shear stress at 5 dyn/cm2. The Cx43 cDNA transfection could induce the expression of SM22α or H1-calponin and attenuate CD31 expression in ECs. Also, Cx43 overexpression harms cilia formation in ECs exposed to 5 dyn/cm2, accompanied with the regulated Ift88 and smad signaling. CONCLUSIONS: This study found that laminar shear stress at 5 dyn/cm2 would increase the expression of Cx43 to facilitate the EndMT process of ECs, associated with morphological changes in primary cilia and the decreased expression of Ift88 in ECs.


Subject(s)
Connexin 43 , Endothelial Cells , Animals , Rats , Cells, Cultured , Connexin 43/genetics , DNA, Complementary , Signal Transduction , Stress, Mechanical
5.
BMC Cancer ; 23(1): 1159, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017386

ABSTRACT

BACKGROUND: As a histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) plays an important role in the occurrence and development of cancer. To explore the mechanism and biological function of SUV39H1 in hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) can gain an insight into the pathogenesis of HBV-HCC. METHODS: The effect of HBV infection on SUV39H1 in hepatoma cells was detected. CCK-8, colony growth assay and wound healing assay were used to assess the proliferation and migration of HBV-positive hepatoma cells. RNA sequencing (RNA-seq) was applied to find differential genes and enriched pathways. The serum SUV39H1 level in HBV-HCC patients was detected and its correlation with clinical indicators was analyzed. RESULTS: SUV39H1 was increased by HBV infection and promoted the proliferation and migration of hepatoma cells. SUV39H1 could upregulate the expression of mitochondrial oxidative phosphorylation (OXPHOS) pathway-related genes. OXPHOS pathway inhibitors could reduce the capacity of proliferation and migration of hepatoma cells after overexpressing SUV39H1. Serum SUV39H1 levels were higher in chronic hepatitis B (CHB) patients than in healthy controls and higher in HBV-HCC patients than in CHB patients. In the diagnosis of HCC, the predictive value of SUV39H1 combined with alpha-fetoprotein (AFP) was better than that of AFP alone. CONCLUSION: SUV39H1 is regulated by HBV infection and promotes the proliferation and migration of hepatoma cells by targeting OXPHOS pathway. It indicates that SUV39H1 may be a new biomarker of the diagnosis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/metabolism , alpha-Fetoproteins/metabolism , Liver Neoplasms/pathology , Oxidative Phosphorylation , Biomarkers , Hepatitis B/complications , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Methyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
6.
Exp Cell Res ; 416(1): 113136, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35421367

ABSTRACT

Glioma is one of the most common malignancies. De novo serine synthesis promotes glioma progression and therapeutic resistance. Therefore, clarifying the regulatory mechanism of serine synthesis is of great significance for glioma therapy. In this study, we found that the expression of TFCP2 was upregulated in glioma and that TFCP2 promoted glioma cell growth and sphere formation. Knockdown of TFCP2 expression inhibited glioma cell growth, sphere formation and tumorigenicity in nude mice. In terms of its molecular mechanism, TFCP2 was found to interact with ATF3 to cooperatively regulate the de novo synthesis of serine. Knockdown of TFCP2 expression significantly inhibited the binding of ATF3 to the promoter of PHGDH (a rate-limiting enzyme in the serine synthesis process). In conclusion, our studies proved that TFCP2 jointly regulates the de novo synthesis of serine through interaction with ATF3, thus promoting glioma progression. This study suggests that TFCP2 is a potential target for glioma therapy.


Subject(s)
Glioma , Serine , Animals , Carrier Proteins , Cell Line, Tumor , DNA-Binding Proteins , Glioma/genetics , Mice , Mice, Nude , Serine/metabolism , Transcription Factors/metabolism
7.
FASEB J ; 35(1): e20526, 2021 01.
Article in English | MEDLINE | ID: mdl-33174326

ABSTRACT

Aberrant expression of long noncoding RNA (lncRNA) H19 and microRNA (miR)-29b has been implicated in the complications of diabetes mellitus (DM). As a common and important complication of DM, diabetic foot ulcer (DFU) is characterized by high incidence and poor prognosis. Herein, we explored the role of lncRNA H19 in wound healing of DFU. Differentially expressed DM-related lncRNAs were initially screened by microarray data analysis. DFU models were then induced in DM mouse models. The functional role and interaction of lncRNA H19, miR-29b and FBN1 in DFU were subsequently determined by examining the proliferation, migration, and apoptosis of fibroblasts after silencing H19, inhibiting or overexpressing miR-29b and FBN1. According to microarray-based analysis, lncRNA H19 was upregulated in DM. In the ulcerative edge tissues of DFU, high expression of lncRNA H19 and FBN1 and low expression of miR-29b were observed. FBN1 was identified to be a target gene of miR-29b. LncRNA H19 could competitively bind to miR-29b, and then, inhibited its expression, which consequently upregulating FBN1. Silencing of lncRNA H19 led to inhibited proliferation, migration, and enhanced apoptosis of fibroblasts, accompanied by downregulated FBN1 but upregulated miR-29b, which diminished the expression of TGF-Ɵ1, Smad3, FN, and Col-1 and reduced extracellular matrix accumulation. Altogether, upregulation of lncRNA H19 can elevate the expression of FBN1 through competitively binding to miR-29b, which enhances the proliferation, migration, and inhibits apoptosis of fibroblasts, thus facilitating the wound healing of DFU.


Subject(s)
Diabetic Foot/metabolism , Gene Expression Regulation , MicroRNAs/biosynthesis , RNA, Long Noncoding/metabolism , Wound Healing , Aged , Animals , Apoptosis , Diabetic Foot/genetics , Diabetic Foot/pathology , Disease Models, Animal , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred ICR , MicroRNAs/genetics , Middle Aged , Oligonucleotide Array Sequence Analysis , RNA, Long Noncoding/genetics
8.
FASEB J ; 34(6): 7360-7371, 2020 06.
Article in English | MEDLINE | ID: mdl-32350920

ABSTRACT

It has been documented that M2 macrophage polarization plays a suppressive role in atherosclerosis in diabetes mellitus (DM). In addition, prostaglandin E2 (PGE2) is implicated in the development of M2 macrophage polarization. Therefore, the study aimed to investigate the specific mechanism of PGE2 in M2 macrophage polarization in diabetic coronary atherosclerosis (DMAS). Initially, clinical samples were obtained and DMAS mouse model was established. The expression of BDNF was determined, and M1 and M2 macrophage polarizations were evaluated. Then, the levels of BDNF and PGE2 were modified in DMAS mice and the serum indicator, atherosclerotic plaque, lipid uptake by PBMCs, as well as M1 and M2 macrophage polarization were determined. Macrophages were isolated and the effects of PGE2 and the CREB/BDNF/TrkB signaling pathway on M2 macrophage polarization were explored. BDNF was downregulated and macrophages were differentiated into M1 in DMAS patients and mice. BDNF and PGE2 were observed to promote M2 macrophage polarization, where atherosclerotic plaque and lipid uptake by PBMCs were reduced, and DMAS was alleviated in mice. Overexpression of BDNF activated the CREB/BDNF/TrkB signaling pathway and stimulated M2 macrophage polarization in macrophages. PGE2 stimulated M2 macrophage polarization by inducing KLF4 via the activation of the CREB/BDNF/TrkB signaling pathway. This study demonstrates that PGE2 promotes M2 macrophage polarization by activating the CREB/BDNF/TrkB signaling pathway, thus alleviating DMAS.


Subject(s)
Atherosclerosis/drug therapy , Brain-Derived Neurotrophic Factor/metabolism , Cell Polarity/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dinoprostone/pharmacology , Macrophage Activation/drug effects , Membrane Glycoproteins/metabolism , Receptor, trkB/metabolism , Animals , Atherosclerosis/metabolism , Cell Differentiation/drug effects , Coronary Artery Disease/drug therapy , Coronary Artery Disease/metabolism , Diabetes Mellitus/metabolism , Female , Humans , Kruppel-Like Factor 4 , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects
9.
Chin J Traumatol ; 24(5): 273-279, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34016503

ABSTRACT

PURPOSE: Low-velocity penetrating brain injury (LVPBI) caused by foreign bodies can pose life-threatening emergencies. Their complexity and lack of validated classification data have prevented standardization of clinical management. We aimed to compare the trans-base and trans-vault phenotypes of LVPBI to help provide guidance for clinical decision-making of such injury type. METHODS: A retrospective study on LVPBI patients managed at our institution from November 2013 to March 2020 was conducted. We included LVPBI patients admitted for the first time for surgery, and excluded those with multiple injuries, gunshot wounds, pregnancy, severe blunt head trauma, etc. Patients were categorized into trans-base and trans-vault LVPBI groups based on the penetration pathway. Discharged patients were followed up by outpatient visit or telephone. The data were entered into the Electronic Medical Record system by clinicians, and subsequently derived by researchers. The demography and injury characteristics, treatment protocols, complications, and outcomes were analyzed and compared between the two groups. A t-test was used for analysis of normally distributed data, and a Mann-Whitney U test for non-parametric data. A generalized linear model was further established to determine whether the factors length of stay and performance scale score were influenced by each factor. RESULTS: A total of 27 LVPBI patients were included in this analysis, comprised of 13 (48.1%) trans-base cases and 14 (51.9%) trans-vault cases. Statistical analyses suggested that trans-base LVPBI was correlated with deeper wounds; while the trans-vault phenotype was correlated with injury by metal foreign bodies. There was no difference in Glasgow Coma Scale score and the risk of intracranial hemorrhage between the two groups. Surgical approaches in the trans-base LVPBI group included subfrontal (nĀ =Ā 5, 38.5%), subtemporal (nĀ =Ā 5, 38.5%), lateral fissure (nĀ =Ā 2, 15.4%), and distal lateral (nĀ =Ā 1, 7.7%). All patients in the trans-vault group underwent a brain convex approach using the foreign body as reference (nĀ =Ā 14, 100%). Moreover, the two groups differed in application prerequisites for intracranial pressure monitoring and vessel-related treatment. Trans-base LVPBI was associated with higher rates of cranial nerve and major vessel injuries; in contrast, trans-vault LVPBI was associated with lower functional outcome scores. CONCLUSION: Our findings suggest that trans-base and trans-vault LVPBIs differ in terms of characteristics, treatment, and outcomes. Further understanding of these differences may help guide clinical decisions and contribute to a better management of LVPBIs.


Subject(s)
Head Injuries, Penetrating , Wounds, Gunshot , Glasgow Coma Scale , Head Injuries, Penetrating/diagnostic imaging , Head Injuries, Penetrating/surgery , Humans , Prognosis , Retrospective Studies
10.
Heart Vessels ; 35(7): 1025-1035, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32270355

ABSTRACT

Atrial fibrillation (AF) is one of the most prevalent arrhythmias. Myocardial sleeves of the pulmonary vein are critical in the occurrence of AF. Our study aims to investigate the effect of synthetic vascular smooth muscle cells (SMCs) on gap junction proteins in cardiomyocytes. (1) Extraction of vascular SMCs from the pulmonary veins of Norway rats. TGF-Ɵ1 was used to induce the vascular SMCs switching to the synthetic phenotype and 18-α-GA was used to inhibit gap junctions of SMCs. The contractile and synthetic phenotype vascular SMCs were cocultured with HL-1 cells; (2) Western blotting was used to detect the expression of Cx43, Cx40 and Cx45 in HL-1 cells, and RT-PCR to test microRNA 27b in vascular SMCs or in HL-1 cells; (3) Lucifer yellow dye transfer experiment was used to detect the function of gap junctions. (1) TGF- Ɵ1 induced the vascular SMCs switching to synthetic phenotype; (2) Cx43 was significantly increased, and Cx40 and Cx45 were decreased in HL-1 cocultured with synthetic SMCs; (3) The fluorescence intensity of Lucifer yellow was higher in HL-1 cocultured with synthetic SMCs than that in the cells cocultured with contractile SMCs, which was inhibited by18-α-GA; (4) the expression of microRNA 27b was increased in HL-1 cocultured with synthetic SMCs, which was attenuated markedly by 18-α-GA. (5) the expression of ZFHX3 was decreased in HL-1 cocultured with synthetic SMCs, which was reversed by 18-α-GA. The gap junction proteins of HL-1 were regulated by pulmonary venous SMCs undergoing phenotypic transition in this study, accompanied with the up-regulation of microRNA 27b and the down-regulation of ZFHX3 in HL-1 cells, which was associated with heterocellular gap junctions between HL-1 and pulmonary venous SMCs.


Subject(s)
Cell Communication , Cell Plasticity , Connexins/metabolism , Gap Junctions/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Cell Communication/drug effects , Cell Line , Cell Plasticity/drug effects , Coculture Techniques , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Gap Junctions/drug effects , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , MicroRNAs/genetics , Muscle, Smooth, Vascular/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Smooth Muscle/drug effects , Phenotype , Pulmonary Veins/metabolism , Rats , Signal Transduction , Transforming Growth Factor beta1/pharmacology , Gap Junction alpha-5 Protein
11.
J Cell Physiol ; 234(4): 4054-4067, 2019 04.
Article in English | MEDLINE | ID: mdl-30206929

ABSTRACT

Papillary thyroid cancer (PTC) is a kind of thyroid cancer and frequently presents with epithelial-mesenchymal transition (EMT). MicroRNAs (miRNAs) were previously reported to be associated with PTC. Thus, this study aims to define the role of microRNA-520a-3p (miR-520a-3p) in PTC through the JAK/STAT signaling pathway by targeting JAK1. The PTC and normal thyroid tissues of 137 PTC patients were collected. First of all, the expression pattern of miR-520a-3p, JAK1, JAK2, STAT3, E-cadherin, and vimentin in PTC was identified. The relationship between miR-520a-3p and JAK1 was predicted and analyzed. And a series of miR-520a-3p mimic or inhibitor, or siRNA JAK1 introduced into PTC cells were applied to examine the effect of miR-520a-3p on PTC cell viability, migration, invasion, cell cycle, apoptosis, and EMT. Meanwhile, the regulatory effect of miR-520a-3p and JAK1 on the JAK/STAT signaling pathway was also determined. The expression of JAK1, JAK2, STAT3, and vimentin increased yet miR-520a-3p and E-cadherin decreased in PTC tissue. JAK1 was negatively regulated by miR-520a-3p. Functionally, EMT induction was prevented by miR-520a-3p upregulation through downregulating JAK1. When upregulating miR-520a-3p or silencing JAK1 in PTC cells, PTC cell viability, migration, and invasion were inhibited yet cell apoptosis promoted with cells arrested at G1 phase, indicating that miR-520a-3p prevented PTC progression by downregulating JAK1. Moreover, miR-520a-3p elevation or JAK1 inhibition inactivated the JAK/STAT signaling pathway. Collectively, miR-520a-3p prevents cancer progression through inactivating the JAK/STAT signaling pathway by downregulating JAK1 in PTC.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Janus Kinase 1/metabolism , MicroRNAs/metabolism , STAT3 Transcription Factor/metabolism , Thyroid Cancer, Papillary/enzymology , Thyroid Neoplasms/enzymology , Adult , Apoptosis , Cell Line, Tumor , Cell Proliferation , Female , G1 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic , Humans , Janus Kinase 1/genetics , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , STAT3 Transcription Factor/genetics , Signal Transduction , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Young Adult
12.
Heliyon ; 10(15): e35303, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170313

ABSTRACT

Glioma is one of the prevalent malignancies, and identifying therapeutic targets for glioma is highly important. Findings of current study revealed that inositol-trisphosphate 3-kinase A (ITPKA) was found abnormally over expressed and thereby exhibited poor prognosis with glioma. Extensive academic research has meticulously elucidated ITPKA's pivotal role in enhancing glioma cell proliferation and invasion, highlighting its significance in oncogenic pathways and cellular dynamics specific to aggressive brain tumors. Inhibiting the ITPKA has wide scope to reduce the tumorigenicity in gliomas in vivo. We also noticed that ITPKA interacts with PYCR1 and phosphorylates serine 29 of PYCR1. Phosphorylation of serine 29 inhibits the E3 ligase Stub1-mediated ubiquitination of PYCR1, thereby stabilizing its protein level. Based on our findings, it was determined that the phosphorylation of serine 29 in PYCR1 by ITPKA enhances the stability of the phosphorylated PYCR1 protein. This, in turn, involved significantly in oncogenic function of ITPKA in glioblastoma. Consequently, ITPKA holds promise as a potential target in prospective glioma therapy.

13.
Environ Sci Pollut Res Int ; 31(11): 16554-16570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319420

ABSTRACT

The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.4 mgĀ·g-1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the application. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the Zr6(Āµ3-O)4(Āµ3-OH)4(H2O)4(OH)4 clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient adsorbent.


Subject(s)
Anti-Infective Agents , Uranium , Humans , Wastewater , Uranium/analysis , Oximes , Molecular Structure , Adsorption , Kinetics
14.
J Diabetes ; 16(4): e13537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38599855

ABSTRACT

AIM: Hydrogels with excellent biocompatibility and biodegradability can be used as the desirable dressings for the therapy of diabetic foot ulcer (DFU). This review aimed to summarize the biological functions of hydrogels, combining with the pathogenesis of DFU. METHODS: The studies in the last 10 years were searched and summarized from the online database PubMed using a combination of keywords such as hydrogel and diabetes. The biological functions of hydrogels and their healing mechanism on DFU were elaborated. RESULTS: In this review, hydrogels were classified by their active substances such as drugs, cytokines, photosensitizers, and biomimetic peptide. Based on this, the biological functions of hydrogels were summarized by associating the pathogenesis of DFU, including oxidative stress, chronic inflammation, cell phenotype change, vasculopathy, and infection. This review also pointed out some of the shortcomings of hydrogels in present researches. CONCLUSIONS: Hydrogels were classified into carrier hydrogels and self-functioning hydrogels in this review. Besides, the functions and components of existing hydrogels were clarified to provide assistance for future researches and clinical applications.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/drug therapy , Hydrogels/therapeutic use , Wound Healing , Cytokines
15.
Thromb Haemost ; 123(3): 295-306, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36402131

ABSTRACT

The adhesion G protein-coupled receptor GPR56 mediates cell-cell and cell-extracellular matrix interactions. To examine the function of GPR56 in platelet activation and arterial thrombosis, we generated GPR56-knockout mice and evaluated GPR56 expression in human and mouse platelets. The results revealed that the levels of the GPR56 N-terminal fragment were significantly higher on the first day after myocardial infarction than on the seventh day in the plasma of patients with ST-segment-elevation myocardial infarction. Next, we investigated the effects of GPR56 on platelet function in vitro and in vivo. We observed that collagen-induced aggregation and adenosine triphosphate release were reduced in Gpr56 -/- platelets. Furthermore, P-selectin expression on the Gpr56 -/- platelet surface was also reduced, and the spreading area on immobilized collagen was decreased in Gpr56 -/- platelets. Furthermore, collagen-induced platelet activation in human platelets was inhibited by an anti-GPR56 antibody. Gpr56 -/- mice showed an extended time to the first occlusion in models with cremaster arteriole laser injury and FeCl3-induced carotid artery injury. GPR56 activated the G protein 13 signaling pathway following collagen stimulation, which promoted platelet adhesion and thrombus formation at the site of vascular injury. Thus, our study confirmed that GPR56 regulated the formation of arterial thrombosis. Inhibition of the initial response of GPR56 to collagen could significantly inhibit platelet activation and thrombus formation. Our results provide new insights for research into antiplatelet drugs.


Subject(s)
Myocardial Infarction , Thrombosis , Humans , Mice , Animals , Platelet Aggregation , Platelet Activation , Blood Platelets/metabolism , Mice, Knockout , Collagen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
16.
Front Neurol ; 14: 1193768, 2023.
Article in English | MEDLINE | ID: mdl-37342784

ABSTRACT

Background: The COVID-19 pandemic has significantly impacted public health, putting people with Alzheimer's disease at significant risk. This study used bibliometric analysis method to conduct in-depth research on the relationship between COVID-19 and Alzheimer's disease, as well as to predict its development trends. Methods: The Web of Science Core Collection was searched for relevant literature on Alzheimer's and Coronavirus-19 during 2019-2023. We used a search query string in our advanced search. Using Microsoft Excel 2021 and VOSviewer software, a statistical analysis of primary high-yield authors, research institutions, countries, and journals was performed. Knowledge networks, collaboration maps, hotspots, and regional trends were analyzed using VOSviewer and CiteSpace. Results: During 2020-2023, 866 academic studies were published in international journals. United States, Italy, and the United Kingdom rank top three in the survey; in terms of productivity, the top three schools were Harvard Medical School, the University of Padua, and the University of Oxford; Bonanni, Laura, from Gabriele d'Annunzio University (Italy), Tedeschi, Gioacchino from the University of Campania Luigi Vanvitelli (Italy), Vanacore, Nicola from Natl Ctr Dis Prevent and Health Promot (Italy), Reddy, P. Hemachandra from Texas Tech University (USA), and El Haj, Mohamad from University of Nantes (France) were the authors who published the most articles; The Journal of Alzheimer's Disease is the journals with the most published articles; "COVID-19," "Alzheimer's disease," "neurodegenerative diseases," "cognitive impairment," "neuroinflammation," "quality of life," and "neurological complications" have been the focus of attention in the last 3 years. Conclusion: The disease caused by the COVID-19 virus infection related to Alzheimer's disease has attracted significant attention worldwide. The major hot topics in 2020 were: "Alzheimer' disease," COVID-19," risk factors," care," and "Parkinson's disease." During the 2 years 2021 and 2022, researchers were also interested in "neurodegenerative diseases," "cognitive impairment," and "quality of life," which require further investigation.

17.
ACS Appl Mater Interfaces ; 15(4): 5577-5589, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36651633

ABSTRACT

Through molecule self-assembly and subsequent surface functionalization, novel uranium adsorbent AO-OB hierarchical self-assembled polyimide microspheres (AO-OBHSPIMs) were obtained by introducing the amidoxime groups into hierarchical self-assembled polyimide microspheres for the efficient and selective recovery of uranium from wastewater. The results of Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm showed that AO-OBHSPIMs were a semicrystalline polymer material with self-supporting hierarchical structure and low pore volume, and they were equipped with abundant amidoxime groups. Given the recognized selectivity of amidoxime groups and their hierarchical structure, AO-OBHSPIMs exhibited excellent selectivity to uranyl ions. Moreover, AO-OBHSPIMs exhibited good stability and recyclability and remarkable removal percentage within low-concentration solution (99.4%) and simulated uranium-containing wastewater (97.3%). AO-OBHSPIMs could be applied to fixed-bed column adsorption due to their large particle size and self-supporting hierarchical structure that can facilitate water flow. The in-depth discussion of the adsorption mechanism showed that the adsorption mainly depended on the combined action of electrostatic interactions and complexation, and the adsorption process was a spontaneous endothermic monolayer adsorption. In summary, AO-OBHSPIMs exhibited good application prospects in uranium-containing wastewater remediation.

18.
Front Immunol ; 14: 1222425, 2023.
Article in English | MEDLINE | ID: mdl-37662915

ABSTRACT

Cell migration-inducing protein (CEMIP), also known as KIAA1199 and hyaluronan-binding protein involved in hyaluronan depolymerization, is a new member of the hyaluronidase family that degrades hyaluronic acid (HA) and remodels the extracellular matrix. In recent years, some studies have reported that CEMIP can promote the proliferation, invasion, and adhesion of various tumor cells and can play an important role in bacterial infection and arthritis. This review focuses on the pathological mechanism of CEMIP in a variety of diseases and expounds the function of CEMIP from the aspects of inhibiting cell apoptosis, promoting HA degradation, inducing inflammatory responses and related phosphorylation, adjusting cellular microenvironment, and regulating tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also summarized. The various functions of CEMIP show its great potential application value.


Subject(s)
Arthritis , Hyaluronic Acid , Humans , Hyaluronoglucosaminidase , Apoptosis , Cell Movement
19.
J Neurotrauma ; 39(17-18): 1231-1239, 2022 09.
Article in English | MEDLINE | ID: mdl-35538792

ABSTRACT

This study aimed to address the risk factors of second decompressive craniectomy (DC) in patients with traumatic brain injury (TBI) who initially underwent mass lesion evacuation, but no primary DC. Patients were enrolled if they had had a hospital visit to Xiangya Hospital, Central South University with acute closed TBI from January 1, 2017 to December 31, 2019 and had undergone craniotomic mass lesion evacuation. Sociodemographic information, computed tomography (CT) information, clinical profiles, and surgical information were obtained from an electronic database. Twenty-four patients who had undergone a second decompressive craniectomy (SDC) and 39 patients who had not (NSO) were included in the analysis. The prevailing lesions differed between the groups (p = 0.010). The SDC group had more compressed/obliterated basal cisterns than the NSO group (p = 0.028). After closure of the dura, the SDC group also had higher intracranial pressure (ICP) than the NSO group (10.9 mm Hg vs. 6.5 mm Hg, p = 0.005). Binary logistical regression indicated that ICP after dura closure was an independent predictor of second DC (odds ratio [OR] = 1.317, p = 0.011). A model using ICP after dura closure alone had an area under the curve value of 0.757 in its receiver operating characteristic curve. An ICP >10.5 mm Hg after closure of dura for the prediction of a second DC had a sensitivity of 56.3% and a specificity of 92.6%.


Subject(s)
Brain Injuries, Traumatic , Craniocerebral Trauma , Decompressive Craniectomy , Intracranial Hypertension , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/surgery , Decompressive Craniectomy/methods , Humans , Intracranial Hypertension/etiology , Intracranial Hypertension/surgery , Intracranial Pressure , Retrospective Studies , Treatment Outcome
20.
Front Microbiol ; 13: 1052917, 2022.
Article in English | MEDLINE | ID: mdl-36504808

ABSTRACT

Background: Chronic hepatitis B (CHB) remains a significant global health problem, leading to recurrent inflammation and liver-damaging diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, although diagnostic markers for CHB are well established, the indicators for predicting liver injury caused by hepatitis B virus (HBV) infection still need to be further explored. Thus, the identification of credible infectious indicators is urgently needed to facilitate timely clinical intervention and avoid the progression of disease malignancy. Methods: The Gene Expression Omnibus (GEO) database GSE83148 data set was used to explore the hub genes for HBV infection. The quantitative real-time polymerase chain reaction (qPCR) was used to identify the impact of HBV infection on the expression of hub gene at the cell level. At the same time, serum samples and clinical information were collected from healthy, HBV-free and CHB patients. The enzyme-linked immunosorbent assay (ELISA) was used to verify the results of cell experiments and Pearson correlation analysis was used to clarify hub genes correlation with HBV infection indicators and liver injury-related indicators. Finally, the Gene Expression Profiling Interactive Analysis (GEPIA) database was used to analyze the differences in the expression of hub gene in liver injury diseases. Results: Chemokine (C-X-C motif) ligand (CXCL)8, CXCL9, CXCL10, and CXCL11 were identified as hub genes in HBV infection. After HBV infection, the expression of the four chemokines was significantly increased and the concentrations secreted into serum were also increased. Moreover, the four chemokines were significantly correlated with HBV infection-related indicators and liver injury-related indicators, which were positively correlated with alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatitis B e antigen (HBeAg), and negatively correlated with AST/ALT ratio and hepatitis B core antibody (HBcAb). In addition, the expression of CXCL9, CXCL10, and CXCL11 in HCC tissues was significantly higher than in normal tissues. Conclusion: Using a combination of bioinformatics, cell experiments, and clinical correlation analysis, this study showed that CXCL8, CXCL9, CXCL10, and CXCL11 can be used as serum biomarkers to forecast liver injury caused by HBV infection.

SELECTION OF CITATIONS
SEARCH DETAIL