Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 356, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158730

ABSTRACT

FGF12 belongs to a subfamily of FGF proteins called FGF homologous factors (FHFs), which until recently were thought to be non-signaling intracellular proteins. Our recent studies have shown that although they lack a conventional signal peptide for secretion, they can reach the extracellular space, especially under stress conditions. Here, we unraveled that the long "a" isoform of FGF12 is secreted in a pathway involving the A1 subunit of Na(+)/K(+) ATPase (ATP1A1), Tec kinase and lipids such as phosphatidylinositol and phosphatidylserine. Further, we showed that the short "b" isoform of FGF12, which binds ATP1A1 and phosphatidylserine less efficiently, is not secreted from cells. We also indicated regions in the FGF12a protein sequence that are crucial for its secretion, including N-terminal fragment and specific residues, and proposed that liquid-liquid phase separation may be important in this process. Our results strongly suggest that the mechanism of this process is very similar for all unconventionally secreted FGF proteins.


Subject(s)
Fibroblast Growth Factors , Humans , Fibroblast Growth Factors/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Protein Isoforms/metabolism , Protein Isoforms/genetics , Phosphatidylserines/metabolism , Amino Acid Sequence
2.
FASEB J ; 37(7): e23043, 2023 07.
Article in English | MEDLINE | ID: mdl-37342898

ABSTRACT

FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.


Subject(s)
Fibroblast Growth Factors , Receptors, Fibroblast Growth Factor , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Fibroblast Growth Factors/metabolism , Signal Transduction/physiology , Phosphorylation , Protein Processing, Post-Translational
3.
Cell Commun Signal ; 22(1): 175, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38468333

ABSTRACT

Galectins constitute a class of lectins that specifically interact with ß-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.


Subject(s)
Galectin 1 , Galectins , Galectins/metabolism , Fibroblast Growth Factors , Glycoconjugates , Ribosomes/metabolism
4.
Cell Mol Life Sci ; 80(10): 311, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37783936

ABSTRACT

Fibroblast growth factor 1 (FGF1) acts by activating specific tyrosine kinase receptors on the cell surface. In addition to this classical mode of action, FGF1 also exhibits intracellular activity. Recently, we found that FGF1 translocated into the cell interior exhibits anti-apoptotic activity independent of receptor activation and downstream signaling. Here, we show that expression of FGF1 increases the survival of cells treated with various apoptosis inducers, but only when wild-type p53 is present. The p53-negative cells were not protected by either ectopically expressed or translocated FGF1. We also confirmed the requirement of p53 for the anti-apoptotic intracellular activity of FGF1 by silencing p53, resulting in loss of the protective effect of FGF1. In contrast, in p53-negative cells, intracellular FGF1 regained its anti-apoptotic properties after transfection with wild-type p53. We also found that FGF1 directly interacts with p53 in cells and that the binding region is located in the DBD domain of p53. We therefore postulate that intracellular FGF1 protects cells from apoptosis by directly interacting with p53.


Subject(s)
Fibroblast Growth Factor 1 , Tumor Suppressor Protein p53 , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Apoptosis
5.
Differentiation ; : 100740, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38042708

ABSTRACT

Fibroblast growth factor 12 (FGF12) belongs to the fibroblast growth factor homologous factors (FHF) subfamily, which is also known as the FGF11 subfamily. The human FGF12 gene is located on chromosome 3 and consists of four introns and five coding exons. Their alternative splicing results in two FGF12 isoforms - the shorter 'b' isoform and the longer 'a' isoform. Structurally, the core domain of FGF12, is highly homologous to that of the other FGF proteins, providing the classical tertiary structure of ß-trefoil. FGF12 is expressed in various tissues, most abundantly in excitable cells such as neurons and cardiomyocytes. For many years, FGF12 was thought to be exclusively an intracellular protein, but recent studies have shown that it can be secreted despite the absence of a canonical signal for secretion. The best-studied function of FGF12 relates to its interaction with sodium channels. In addition, FGF12 forms complexes with signaling proteins, regulates the cytoskeletal system, binds to the FGF receptors activating signaling cascades to prevent apoptosis and interacts with the ribosome biogenesis complex. Importantly, FGF12 has been linked to nervous system disorders, cancers and cardiac diseases such as epileptic encephalopathy, pulmonary hypertension and cardiac arrhythmias, making it a potential target for gene therapy as well as a therapeutic agent.

6.
Cell Commun Signal ; 20(1): 182, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411431

ABSTRACT

Among the FGF proteins, the least characterized superfamily is the group of fibroblast growth factor homologous factors (FHFs). To date, the main role of FHFs has been primarily seen in the modulation of voltage-gated ion channels, but a full picture of the function of FHFs inside the cell is far from complete. In the present study, we focused on identifying novel FGF12 binding partners to indicate its intracellular functions. Among the identified proteins, a significant number were nuclear proteins, especially RNA-binding proteins involved in translational processes, such as ribosomal processing and modification. We have demonstrated that FGF12 is localized to the nucleolus, where it interacts with NOLC1 and TCOF1, proteins involved in the assembly of functional ribosomes. Interactions with both NOLC1 and TCOF1 are unique to FGF12, as other FHF proteins only bind to TCOF1. The formation of nucleolar FGF12 complexes with NOLC1 and TCOF1 is phosphorylation-dependent and requires the C-terminal region of FGF12. Surprisingly, NOLC1 and TCOF1 are unable to interact with each other in the absence of FGF12. Taken together, our data link FHF proteins to nucleoli for the first time and suggest a novel and unexpected role for FGF12 in ribosome biogenesis. Video Abstract.


Subject(s)
Fibroblast Growth Factors , Ribosomes , Nuclear Proteins , Phosphorylation
7.
Int J Biol Macromol ; 277(Pt 2): 134371, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094876

ABSTRACT

Galectin-8 is a small soluble lectin with two carbohydrate recognition domains (CRDs). N- and C-terminal CRDs of Gal-8 differ in their specificity for glycan ligands. Here, we wanted to find out whether oligomerization of individual CRDs of galectin-8 affects its biological activity. Using green fluorescent protein polygons (GFPp) as an oligomerization scaffold, we generated intrinsically fluorescent CRDs with altered valency. We show that oligomers of C-CRD are characterized by significant cell surface affinity. Furthermore, the multivalency of the resulting variants has an impact on cellular activities such as cell signaling, heparin binding and proliferation. Our data indicates that tunable valence is a useful tool for modifying the biological activity of CRDs of galectins.


Subject(s)
Galectins , Galectins/metabolism , Galectins/chemistry , Humans , Ligands , Protein Binding , Protein Engineering/methods , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/chemistry , Protein Multimerization , Cell Proliferation , Heparin/chemistry , Heparin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL