Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nature ; 626(7999): 574-582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086421

ABSTRACT

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Subject(s)
Astrocytes , Neuroprotection , Adenylyl Cyclases/metabolism , Astrocytes/cytology , Astrocytes/enzymology , Astrocytes/metabolism , Cell Differentiation , Cell Nucleus/metabolism , Cell Survival , Cyclic AMP/metabolism , Cytoplasm/metabolism , Macrophages/metabolism , Macrophages/pathology , Microglia/metabolism , Microglia/pathology , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Optic Nerve Injuries/therapy , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , White Matter/metabolism , White Matter/pathology , Glaucoma/pathology , Glaucoma/therapy
2.
Proc Natl Acad Sci U S A ; 111(47): 16883-8, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25385594

ABSTRACT

Amyotrophic lateral sclerosis (ALS; Lou Gehrig's disease) affects motor neurons (MNs) in the brain and spinal cord. Understanding the pathophysiology of this condition seems crucial for therapeutic design, yet few electrophysiological studies in actively degenerating animal models have been reported. Here, we report a novel preparation of acute slices from adult mouse spinal cord, allowing visualized whole cell patch-clamp recordings of fluorescent lumbar MN cell bodies from ChAT-eGFP or superoxide dismutase 1-yellow fluorescent protein (SOD1YFP) transgenic animals up to 6 mo of age. We examined 11 intrinsic electrophysiologic properties of adult ChAT-eGFP mouse MNs and classified them into four subtypes based on these parameters. The subtypes could be principally correlated with instantaneous (initial) and steady-state firing rates. We used retrograde tracing using fluorescent dye injected into fast or slow twitch lower extremity muscle with slice recordings from the fluorescent-labeled lumbar MN cell bodies to establish that fast and slow firing MNs are connected with fast and slow twitch muscle, respectively. In a G85R SOD1YFP transgenic mouse model of ALS, which becomes paralyzed by 5-6 mo, where MN cell bodies are fluorescent, enabling the same type of recording from spinal cord tissue slices, we observed that all four MN subtypes were present at 2 mo of age. At 4 mo, by which time substantial neuronal SOD1YFP aggregation and cell loss has occurred and symptoms have developed, one of the fast firing subtypes that innvervates fast twitch muscle was lost. These results begin to describe an order of the pathophysiologic events in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Motor Neurons/physiology , Spinal Cord/pathology , Superoxide Dismutase/physiology , Amyotrophic Lateral Sclerosis/enzymology , Animals , Mice , Motor Neurons/pathology , Patch-Clamp Techniques , Superoxide Dismutase-1
3.
Hum Mol Genet ; 23(4): 1056-72, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24105468

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a severe decline of memory performance. A widely studied AD mouse model is the APPswe/PSEN1ΔE9 (APP/PS1) strain, as mice exhibit amyloid plaques as well as impaired memory capacities. To test whether restoring synaptic plasticity and decreasing ß-amyloid load by Parkin could represent a potential therapeutic target for AD, we crossed APP/PS1 transgenic mice with transgenic mice overexpressing the ubiquitin ligase Parkin and analyzed offspring properties. Overexpression of Parkin in APP/PS1 transgenic mice restored activity-dependent synaptic plasticity and rescued behavioral abnormalities. Moreover, overexpression of Parkin was associated with down-regulation of APP protein expression, decreased ß-amyloid load and reduced inflammation. Our data suggest that Parkin could be a promising target for AD therapy.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Hippocampus/physiopathology , Long-Term Potentiation , Ubiquitin-Protein Ligases/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Animals , Cerebral Cortex/metabolism , Disease Models, Animal , Female , Gene Expression , Hippocampus/metabolism , Humans , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Synaptophysin/metabolism , Transcription, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitination
4.
J Neuroinflammation ; 13: 50, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26920853

ABSTRACT

BACKGROUND: Photoreceptor death leads to vision impairment in several retinal degenerative disorders. Therapies protecting photoreceptor from degeneration remain to be developed. Anti-inflammation, anti-oxidative stress, and neuroprotective effects of celastrol have been demonstrated in a variety of disease models. The current study aimed to investigate the photoreceptor protective effect of celastrol. METHODS: Bright light-induced retinal degeneration in BALB/c mice was used, and morphological, functional, and molecular changes of retina were evaluated in the absence and presence of celastrol treatment. RESULTS: Significant morphological and functional protection was observed as a result of celastrol treatment in bright light-exposed BALB/c mice. Celastrol treatment resulted in suppression of cell death in photoreceptor cells, alleviation of oxidative stress in the retinal pigment epithelium and photoreceptors, downregulation of retinal expression of proinflammatory genes, and suppression of microglia activation and gliosis in the retina. Additionally, leukostasis was found to be induced in the retinal vasculature in light-exposed BALB/c mice, which was significantly attenuated by celastrol treatment. In vitro, celastrol attenuated all-trans-retinal-induced oxidative stress in cultured APRE19 cells. Moreover, celastrol treatment significantly suppressed lipopolysaccharides-stimulated expression of proinflammatory genes in both APRE19 and RAW264.7 cells. CONCLUSIONS: The results demonstrated for the first time that celastrol prevents against light-induced retinal degeneration through inhibition of retinal oxidative stress and inflammation.


Subject(s)
Inflammation/drug therapy , Light/adverse effects , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Retinal Degeneration/prevention & control , Triterpenes/therapeutic use , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Glial Fibrillary Acidic Protein/metabolism , Inflammation/chemically induced , Lipopolysaccharides/toxicity , Mice , Mice, Inbred BALB C , Neuroprotective Agents/pharmacology , Opsins/metabolism , Pentacyclic Triterpenes , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Rhodopsin/metabolism , Triterpenes/pharmacology
5.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38548335

ABSTRACT

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Subject(s)
Neurodegenerative Diseases , Optic Nerve Diseases , Optic Nerve Injuries , Mice , Animals , Retinal Ganglion Cells/metabolism , Optic Nerve Injuries/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Axons/metabolism , Neurodegenerative Diseases/metabolism , Nerve Regeneration/physiology , Optic Nerve Diseases/metabolism , Protein Isoforms/metabolism , Cell Survival/physiology
6.
Stem Cell Reports ; 17(12): 2690-2703, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36368332

ABSTRACT

Retinal ganglion cell (RGC) replacement therapy could restore vision in glaucoma and other optic neuropathies. We developed a rapid protocol for directly induced RGC (iRGC) differentiation from human stem cells, leveraging overexpression of NGN2. Neuronal morphology and neurite growth were observed within 1 week of induction; characteristic RGC-specific gene expression confirmed identity. Calcium imaging demonstrated γ-aminobutyric acid (GABA)-induced excitation characteristic of immature RGCs. Single-cell RNA sequencing showed more similarities between iRGCs and early-stage fetal human RGCs than retinal organoid-derived RGCs. Intravitreally transplanted iRGCs survived and migrated into host retinas independent of prior optic nerve trauma, but iRGCs protected host RGCs from neurodegeneration. These data demonstrate rapid iRGC generation in vitro into an immature cell with high similarity to human fetal RGCs and capacity for retinal integration after transplantation and neuroprotective function after optic nerve injury. The simplicity of this system may benefit translational studies on human RGCs.


Subject(s)
Glaucoma , Optic Nerve Injuries , Humans , Retinal Ganglion Cells , Optic Nerve Injuries/metabolism , Retina , Stem Cells
7.
Acta Biochim Biophys Sin (Shanghai) ; 43(6): 448-54, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21558280

ABSTRACT

In the present study, we tested the effect of cold water stress (CWS) on dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model, and found that CWS pretreatment elicited less MPTP neurotoxicity. To understand the molecular mechanism underlying this phenomenon, we detected the expression of heat shock protein 70 (Hsp70) in the striatum of the experimental mice, and found that CWS pretreatment could significantly increase striatal Hsp70 in MPTP-treated mice. Furthermore, in parallel with the induction of Hsp70, the MPTP-induced increase of striatal α-synuclein was inhibited in the CWS + MPTP-treated mice. CWS pretreatment also significantly inhibited the reduction of anti-apoptotic molecule Bcl-2 expression in the striatum and enhanced Bcl-2 transcription in the substantia nigra of MPTP-treated mice. Taken together, these data indicated that Hsp70 might be an important intermediate for the neuroprotective effect of CWS against MPTP-induced dopaminergic toxicity.


Subject(s)
MPTP Poisoning/physiopathology , Neurotoxicity Syndromes/physiopathology , Stress, Physiological/physiology , Animals , Cold Temperature , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine , HSP70 Heat-Shock Proteins/biosynthesis , Immersion , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/biosynthesis
8.
RSC Adv ; 11(57): 35796-35805, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-35492766

ABSTRACT

Magnetic nanoparticles (MNPs) are widely used in cell sorting, organelle selection, drug delivery, cell delivery, and cell tracking applications. However, organelle manipulation in living cells has been limited due to the endocytic uptake and sequestration of MNPs. Here, we introduce a method for modifying MNPs with fusogenic liposomes that facilitate MNP passage directly into the cytosol. MNPs were enclosed in fusogenic liposomes that exhibit a core-shell structure under a transmission electron microscope (TEM). The lipid-to-MNP ratio was optimized for one layer of liposome coating around each MNP, so that MNPs were delivered to the cytosol without endosomal or liposomal coatings. After incubation with the retinal pigment epithelial cell line ARPE-19, single-layer liposome-coated MNPs exhibited the highest MNP delivery efficiency. Although uncoated MNPs are taken up through endocytosis, less than 15% of the fusogenic liposome-coated MNPs co-localized with early endosomes. MNPs delivered by fusogenic liposomes showed cytosolic localization early on and increased lysosomal localization at later time points. The movement of intracellular MNPs could be manipulated with an external magnet to estimate cytosolic viscosity. Bypassing endocytosis in this way allowed efficient delivery of MNPs to the cytosol, potentially allowing for the targeting of specific organelles and controlling their motion in living cells.

9.
eNeuro ; 8(1)2021.
Article in English | MEDLINE | ID: mdl-33441400

ABSTRACT

The failure of adult CNS neurons to survive and regenerate their axons after injury or in neurodegenerative disease remains a major target for basic and clinical neuroscience. Recent data demonstrated in the adult mouse that exogenous expression of Sry-related high-mobility-box 11 (Sox11) promotes optic nerve regeneration after optic nerve injury but exacerbates the death of a subset of retinal ganglion cells (RGCs), α-RGCs. During development, Sox11 is required for RGC differentiation from retinal progenitor cells (RPCs), and we found that mutation of a single residue to prevent SUMOylation at lysine 91 (K91) increased Sox11 nuclear localization and RGC differentiation in vitro Here, we explored whether this Sox11 manipulation similarly has stronger effects on RGC survival and optic nerve regeneration. In vitro, we found that non-SUMOylatable Sox11K91A leads to RGC death and suppresses axon outgrowth in primary neurons. We furthermore found that Sox11K91A more strongly promotes axon regeneration but also increases RGC death after optic nerve injury in vivo in the adult mouse. RNA sequence (RNA-seq) data showed that Sox11 and Sox11K91A increase the expression of key signaling pathway genes associated with axon growth and regeneration but downregulated Spp1 and Opn4 expression in RGC cultures, consistent with negatively regulating the survival of α-RGCs and ipRGCs. Thus, Sox11 and its SUMOylation site at K91 regulate gene expression, survival and axon growth in RGCs, and may be explored further as potential regenerative therapies for optic neuropathy.


Subject(s)
Neurodegenerative Diseases , Optic Nerve Injuries , Animals , Axons/metabolism , Cell Survival , Mice , Nerve Regeneration , Neurodegenerative Diseases/metabolism , Optic Nerve Injuries/metabolism , Protein Processing, Post-Translational , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism
10.
PLoS One ; 15(12): e0242884, 2020.
Article in English | MEDLINE | ID: mdl-33315889

ABSTRACT

Loss of retinal ganglion cells (RGCs) in optic neuropathies results in permanent partial or complete blindness. Myocyte enhancer factor 2 (MEF2) transcription factors have been shown to play a pivotal role in neuronal systems, and in particular MEF2A knockout was shown to enhance RGC survival after optic nerve crush injury. Here we expanded these prior data to study bi-allelic, tri-allelic and heterozygous allele deletion. We observed that deletion of all MEF2A, MEF2C, and MEF2D alleles had no effect on RGC survival during development. Our extended experiments suggest that the majority of the neuroprotective effect was conferred by complete deletion of MEF2A but that MEF2D knockout, although not sufficient to increase RGC survival on its own, increased the positive effect of MEF2A knockout. Conversely, MEF2A over-expression in wildtype mice worsened RGC survival after optic nerve crush. Interestingly, MEF2 transcription factors are regulated by post-translational modification, including by calcineurin-catalyzed dephosphorylation of MEF2A Ser-408 known to increase MEF2A-dependent transactivation in neurons. However, neither phospho-mimetic nor phospho-ablative mutation of MEF2A Ser-408 affected the ability of MEF2A to promote RGC death in vivo after optic nerve injury. Together these findings demonstrate that MEF2 gene expression opposes RGC survival following axon injury in a complex hierarchy, and further support the hypothesis that loss of or interference with MEF2A expression might be beneficial for RGC neuroprotection in diseases such as glaucoma and other optic neuropathies.


Subject(s)
MEF2 Transcription Factors/metabolism , Optic Nerve Injuries/metabolism , Optic Nerve Injuries/pathology , Retinal Ganglion Cells/pathology , Alleles , Animals , Cell Count , Humans , MEF2 Transcription Factors/deficiency , MEF2 Transcription Factors/genetics , Mice , Optic Nerve Injuries/genetics , Point Mutation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL