ABSTRACT
Monitoring Prostate Cancer (PCa) biomarkers is an efficient way to diagnosis this disease early, since it improves the therapeutic success rate and suppresses PCa patient mortality: for this reason a powerful analytical technique such as electrochemiluminescence (ECL) is already used for this application, but its widespread usability is still hampered by the high cost of commercial ECL equipment. We describe an innovative approach for the selective and sensitive detection of the PCa biomarker sarcosine, obtained by a synergistic ECL-supramolecular approach, in which the free base form of sarcosine acts as co-reagent in a Ru(bpy)3(2+)-ECL process. We used magnetic micro-beads decorated with a supramolecular tetraphosphonate cavitand (Tiiii) for the selective capture of sarcosine hydrochloride in a complex matrix like urine. Sarcosine determination was then obtained with ECL measurements thanks to the complexation properties of Tiiii, with a protocol involving simple pH changes - to drive the capture-release process of sarcosine from the receptor - and magnetic micro-bead technology. With this approach we were able to measure sarcosine in the µM to mM window, a concentration range that encompasses the diagnostic urinary value of sarcosine in healthy subjects and PCa patients, respectively. These results indicate how this ECL-supramolecular approach is extremely promising for the detection of sarcosine and for PCa diagnosis and monitoring, and for the development of portable and more affordable devices.
Subject(s)
Early Detection of Cancer/methods , Electrochemical Techniques , Prostatic Neoplasms/diagnosis , Sarcosine/urine , Urinalysis/methods , Early Detection of Cancer/economics , Humans , Limit of Detection , Luminescence , Male , MicrospheresABSTRACT
A supramolecular approach for the specific detection of sarcosine, recently linked to the occurrence of aggressive prostate cancer forms, has been developed. A hybrid active surface was prepared by the covalent anchoring on Si substrates of a tetraphosphonate cavitand as supramolecular receptor and it was proven able to recognize sarcosine from its nonmethylated precursor, glycine, in water and urine. The entire complexation process has been investigated in the solid state, in solution, and at the solid-liquid interface to determine and weight all the factors responsible of the observed specificity. The final outcome is a Si-based active surface capable of binding exclusively sarcosine. The complete selectivity of the cavitand-decorated surface under these stringent conditions represents a critical step forward in the use of these materials for the specific detection of sarcosine and related metabolites in biological fluids.
Subject(s)
Sarcosine/analysis , Silicon/chemistry , Models, Molecular , Sarcosine/urine , Solutions , Surface PropertiesABSTRACT
The direct, clean, and unbiased transduction of molecular recognition into a readable and reproducible response is the biggest challenge associated to the use of synthetic receptors in sensing. All possible solutions demand the mastering of molecular recognition at the solid-liquid interface as prerequisite. The socially relevant issue of screening amine-based illicit and designer drugs is addressed by nanomechanical recognition at the silicon-water interface. The methylamino moieties of different drugs are all first recognized by a single cavitand receptor through a synergistic set of weak interactions. The peculiar recognition ability of the cavitand is then transferred with high fidelity and robustness on silicon microcantilevers and harnessed to realize a nanomechanical device for label-free detection of these drugs in water.
Subject(s)
Designer Drugs/analysis , Methamphetamine/analysis , Silicon/chemistry , Substance Abuse Detection/methods , Water/chemistry , Designer Drugs/chemistry , Methamphetamine/chemistry , Molecular StructureABSTRACT
A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.
ABSTRACT
A new supra-molecular complex (I) between the tetra-phospho-nate cavitand Tiiii[C3H7,CH3,C6H5] [systematic name: 2,8,14,20-tetra-propyl-5,11,17,23-tetra-methyl-6,10:12,16:18,22:24,4-tetra-kis-(phenyl-phospho-nato-O,O')resorcin[4]arene] and mephedrone hydro-choride {C11H16NO+·Cl-; systematic name: meth-yl[1-(4-methyl-phen-yl)-1-oxopropan-2-yl]aza-nium chloride} has been obtained and characterized both in solution and in the solid state. The complex of general formula (C11H16NO)@Tiiii[C3H7,CH3,C6H5]Cl·CH3OH or C11H16NO+·Cl-·C68H68O12P4·CH3OH, crystallizes in the monoclinic space group P21/c with one lattice methanol mol-ecule per cavitand, disordered over two positions with occupancy factors of 0.665â (6) and 0.335â (6). The mephedrone guest inter-acts with the P=O groups at the upper rim of the cavitand through two charge-assisted N-Hâ¯O hydrogen bonds, while the methyl group directly bound to the amino moiety is stabilized inside the π basic cavity via cationâ¯π inter-actions. The chloride counter-anion is located between the alkyl legs of the cavitand, forming C-Hâ¯Cl inter-actions with the aromatic and methyl-enic H atoms of the lower rim. The chloride anion is also responsible for the formation of a supra-molecular chain along the b-axis direction through C-Hâ¯Cl inter-actions involving the phenyl substituent of one phospho-nate group. C-Hâ¯O and C-Hâ¯π inter-actions between the guest and adjacent cavitands contribute to the formation of the crystal structure.
ABSTRACT
We report here the monitoring of reversible guest inclusion in phosphonate cavitands through a large increase in luminescence intensity caused by the modulation of the exoergonicity of an electron-transfer reaction.
ABSTRACT
SiO2/TiO2 microbeads (T-rex) are promising materials for plasmon-free surface-enhanced Raman scattering (SERS), offering several key advantages in biodiagnostics. In this paper we report the combination of T-rex beads with tetraphosphonate cavitands (Tiiii), which imparts selectivity toward Nε-methylated lysine. SERS experiments demonstrated the efficiency and selectivity of the T-rex-Tiiii assays in detecting methylated lysine hydrochloride (Nε-Me-Lys-Fmoc) from aqueous solutions, even in the presence of the parent Lys-Fmoc hydrochloride as interferent. The negative results obtained in control experiments using TSiiii ruled out any other form of surface recognition or preferential physisorption. MALDI-TOF analyses on the beads exposed to Nε-Me-Lys-Fmoc revealed the presence of the Tiiiiâ¢Nε-Me-Lys-Fmoc complex. Raman analyses based on the intensity ratio of Nε-Me-Lys-Fmoc and cavitand-specific modes resulted in a dose-response plot, which allowed for estimating the concentration of Nε-methylated lysine from initial solutions in the 1 × 10(-3) to 1 × 10(-5) M range. These results can set the basis for the development of new Raman assays for epigenetic diagnostics.
Subject(s)
Lysine/chemistry , Ethers, Cyclic , Methylation , Resorcinols , Silicon Dioxide , Spectrum Analysis, RamanABSTRACT
Complete discrimination of ephedrine and pseudoephedrine, both in solution and in the solid state, was achieved with a phosphonate cavitand receptor. The molecular origin of the epimer discrimination was revealed by the crystal structure of the respective complexes.