Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Soft Matter ; 19(2): 295-305, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36520098

ABSTRACT

Switchable hydrophilicity solvents (SHSs) are solvents defined by their ability to switch from their hydrophobic form to a hydrophilic form when brought into contact with an acidic trigger such as CO2. As a consequence, SHSs qualify as promising alternatives to volatile organic compounds during industrial solvent extraction processes, as greener and inexpensive methods can be applied to separate and recover SHSs. Furthermore, because of their less volatile nature, SHSs are less flammable and so increase the safety of a larger scale extraction process. In this work, we study the dynamics and in-drop phase separation during the dissolution process of a drop composed of a SHS and a polymer, triggered by an acid in the surrounding aqueous environment. From 70 different experimental conditions, we found a scaling relationship between the drop dissolution time and the initial volume with an overall scaling coefficient of ∼0.53. We quantitatively assessed and found a shorter dissolution time related to a decrease in the pH of the aqueous phase or an increase in the initial polymer concentration in the drop. Examining the internal state of the drop during the dissolution revealed an in-drop phase separation behavior, resulting in a porous morphology of the final polymer particle. Our experimental results provide a microscopic view of the SHS dissolution process from droplets, and findings may help design SHS extraction processes for particle formation from emulsions.

2.
Radiology ; 250(3): 692-702, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19095783

ABSTRACT

PURPOSE: To depict and analyze in vivo the tumor zone organization of C6 gliomas depicted on quantitative parametric maps obtained with dynamic contrast material-enhanced synchrotron radiation computed tomography (CT) in a tightly controlled data-processing protocol. MATERIALS AND METHODS: Animal use was compliant with official French guidelines and was assessed by the local Internal Evaluation Committee for Animal Welfare and Rights. Fifteen Wistar rats with orthotopically implanted gliomas were studied at monochromatic synchrotron radiation CT after receiving a bolus injection of contrast material. The iodine concentration maps were analyzed by using a compartmental model selected from among a package of models. Choice of model and assessment of the relevance of the model were guided by quality criteria. Tissue blood flow (F(T)), tissue blood volume fraction (V(T)), permeability-surface area product (PS), artery-to-tissue delay (D(A-T)), and vascular mean transit time (MTT) maps were obtained. Parametric map findings were compared with histologic findings. Local regions of interest were selected in the contralateral hemisphere and in several tumor structures to characterize the tumor microvasculature. Differences in parameter values between regions were assessed with the Wilcoxon method. RESULTS: Whole-tumor parameters were expressed as means +/- standard errors of the mean: Mean F(T), V(T), PS, and D(A-T) values and MTT were 61.4 mL/min/100 mL +/- 15.3, 2.4% +/- 0.4, 0.37 mL/min/100 mL +/- 0.11, 0.24 second +/- 0.06; and 3.9 seconds +/- 0.83, respectively. MTT and mean PS were significantly lower (P < .01) in the normal contralateral tissue: 1.10 seconds +/- 0.06 and < or = 10(-5) mL/min/100 mL, respectively. Tumor regions were characterized by significantly different (P < .05) F(T) and V(T) pairs: 108 mL/min/100 mL and 3.66%, respectively, at the periphery; 45.9 mL/min/100 mL and 1.91%, respectively, in the intermediate zone; 5.1 mL/min/100 mL and 0.42%, respectively, in the center; and 210 mL/min/100 mL and 6.82%, respectively, in the maximal value region. CONCLUSION: Fine mapping of the glioma microcirculation is feasible with dynamic contrast-enhanced synchrotron radiation CT performed with well-controlled analytic protocols. SUPPLEMENTAL MATERIAL: http://radiology.rsnajnls.org/cgi/content/full/2501071929/DC1.


Subject(s)
Brain Neoplasms/diagnostic imaging , Disease Models, Animal , Glioma/diagnostic imaging , Iopamidol/analogs & derivatives , Neovascularization, Pathologic/diagnostic imaging , Radiographic Image Enhancement/methods , Synchrotrons , Tomography, X-Ray Computed/methods , Animals , Contrast Media , Male , Rats , Rats, Wistar , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL