Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nature ; 621(7980): 821-829, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586410

ABSTRACT

Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.


Subject(s)
Endothelial Cells , Receptors, Aryl Hydrocarbon , Humans , Animals , Mice , Receptors, Aryl Hydrocarbon/metabolism , Endothelial Cells/metabolism , Intestines , Signal Transduction , Homeostasis , Ligands
2.
Blood ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991192

ABSTRACT

The genomics era has facilitated discovery of new genes predisposing to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ERG as a novel autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor critical for definitive hematopoiesis, stem cell function and platelet maintenance. ERG colocalizes with other transcription factors including RUNX1 and GATA2 on promoters/enhancers of genes orchestrating hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 thrombocytopenic individuals from one family and 14 additional ERG variants in unrelated individuals with BMF/HM including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germline ERG variants included cytopenias (thrombocytopenia, neutropenia, pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense, 1 truncating) including 3 missense population variants were functionally characterized. Thirteen potentially pathogenic ETS domain missense variants displayed loss-of-function characteristics disrupting transcriptional transactivation, DNA-binding and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture, and to promote acute erythroleukemia when transplanted into mice, concordant with these variants being loss-of-function. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germline ERG variants has clinical implications for patient/family diagnosis, counselling, surveillance, and treatment strategies including selection of bone marrow donors or cell/gene therapy.

3.
Development ; 149(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35723257

ABSTRACT

Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.


Subject(s)
Endothelial Cells , Transcription Factors , Animals , Endothelial Cells/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mice , Neovascularization, Physiologic/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitins/metabolism
4.
J Immunol ; 210(5): 537-546, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36637217

ABSTRACT

CD4+ TH cells develop into subsets that are specialized in the secretion of particular cytokines to mediate restricted types of inflammation and immune responses. Among the subsets that promote development of allergic inflammatory responses, IL-9-producing TH9 cells are regulated by a number of transcription factors. We have previously shown that the E26 transformation-specific (Ets) family members PU.1 and Ets translocation variant 5 (ETV5) function in parallel to regulate IL-9. In this study we identified a third member of the Ets family of transcription factors, Ets-related gene (ERG), that mediates IL-9 production in TH9 cells in the absence of PU.1 and ETV5. Chromatin immunoprecipitation assays revealed that ERG interaction at the Il9 promoter region is restricted to the TH9 lineage and is sustained during murine TH9 polarization. Knockdown or knockout of ERG during murine or human TH9 polarization in vitro led to a decrease in IL-9 production in TH9 cells. Deletion of ERG in vivo had modest effects on IL-9 production in vitro or in vivo. However, in the absence of PU.1 and ETV5, ERG was required for residual IL-9 production in vitro and for IL-9 production by lung-derived CD4 T cells in a mouse model of chronic allergic airway disease. Thus, ERG contributes to IL-9 regulation in TH9 cells.


Subject(s)
Alveolitis, Extrinsic Allergic , Asthma , Hypersensitivity , Pneumonia , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , Cell Differentiation , Interleukin-9 , Pneumonia/metabolism , T-Lymphocytes, Helper-Inducer , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Regulator ERG/metabolism
5.
Arterioscler Thromb Vasc Biol ; 43(8): 1412-1428, 2023 08.
Article in English | MEDLINE | ID: mdl-37317853

ABSTRACT

BACKGROUND: During infectious diseases, proinflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung, the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG (erythroblast transformation-specific-related gene) as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. METHODS: Cytokine-dependent ubiquitination and proteasomal degradation of ERG were analyzed in cultured HUVECs (human umbilical vein ECs). Systemic administration of TNFα (tumor necrosis factor alpha) or the bacterial cell wall component lipopolysaccharide was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs (Ergfl/fl;Cdh5[PAC]-CreERT2), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. RESULTS: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or lipopolysaccharide resulted in a rapid and substantial degradation of ERG within lung ECs but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Ergfl/fl;Cdh5(PAC)-CreERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek-a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. CONCLUSIONS: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.


Subject(s)
Communicable Diseases , Transcription Factors , Humans , Mice , Animals , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Cytokines/metabolism , Communicable Diseases/metabolism , Cells, Cultured , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
6.
Circ Res ; 124(9): 1337-1349, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30892142

ABSTRACT

RATIONALE: The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG's homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). OBJECTIVE: To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. METHODS AND RESULTS: Chromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers. CONCLUSIONS: The transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Profiling , Gene Expression Regulation , Cell Line, Tumor , Cells, Cultured , Claudin-5/genetics , Claudin-5/metabolism , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcriptional Regulator ERG/genetics
8.
Blood ; 119(3): 894-903, 2012 Jan 19.
Article in English | MEDLINE | ID: mdl-22117042

ABSTRACT

The endothelial ETS transcription factor Erg plays an important role in homeostasis and angiogenesis by regulating many endothelial functions including survival and junction stability. Here we show that Erg regulates endothelial cell (EC) migration. Transcriptome profiling of Erg-deficient ECs identified ∼ 80 genes involved in cell migration as candidate Erg targets, including many regulators of Rho- GTPases. Inhibition of Erg expression in HUVECs resulted in decreased migration in vitro, while Erg overexpression using adenovirus caused increased migration. Live-cell imaging of Erg-deficient HUVECs showed a reduction in lamellipodia, in line with decreased motility. Both actin and tubulin cytoskeletons were disrupted in Erg-deficient ECs, with a dramatic increase in tubulin acetylation. Among the most significant microarray hits was the cytosolic histone deacetylase 6 (HDAC6), a regulator of cell migration. Chromatin immunoprecipitation (ChIP) and transactivation studies demonstrated that Erg regulates HDAC6 expression. Rescue experiments confirmed that HDAC6 mediates the Erg-dependent regulation of tubulin acetylation and actin localization. In vivo, inhibition of Erg expression in angiogenic ECs resulted in decreased HDAC6 expression with increased tubulin acetylation. Thus, we have identified a novel function for the transcription factor Erg in regulating HDAC6 and multiple pathways essential for EC migration and angiogenesis.


Subject(s)
Biomarkers/metabolism , Cell Movement , Endothelium, Vascular/metabolism , Gene Expression Regulation , Histone Deacetylases/genetics , Neovascularization, Physiologic , Signal Transduction , Trans-Activators/metabolism , Acetylation , Actins/metabolism , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Endothelium, Vascular/cytology , Gene Expression Profiling , Histone Deacetylase 6 , Histone Deacetylases/metabolism , Humans , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Transcriptional Regulator ERG , Umbilical Veins/cytology , Umbilical Veins/metabolism
9.
Cell Commun Signal ; 12: 12, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24593809

ABSTRACT

BACKGROUND: Endothelial junctions control functions such as permeability, angiogenesis and contact inhibition. VE-Cadherin (VECad) is essential for the maintenance of intercellular contacts. In confluent endothelial monolayers, N-Cadherin (NCad) is mostly expressed on the apical and basal membrane, but in the absence of VECad it localizes at junctions. Both cadherins are required for vascular development. The intercellular adhesion molecule (ICAM)-2, also localized at endothelial junctions, is involved in leukocyte recruitment and angiogenesis. RESULTS: In human umbilical vein endothelial cells (HUVEC), both VECad and NCad were found at nascent cell contacts of sub-confluent monolayers, but only VECad localized at the mature junctions of confluent monolayers. Inhibition of ICAM-2 expression by siRNA caused the appearance of small gaps at the junctions and a decrease in NCad junctional staining in sub-confluent monolayers. Endothelioma lines derived from WT or ICAM-2-deficient mice (IC2neg) lacked VECad and failed to form junctions, with loss of contact inhibition. Re-expression of full-length ICAM-2 (IC2 FL) in IC2neg cells restored contact inhibition through recruitment of NCad at the junctions. Mutant ICAM-2 lacking the binding site for ERM proteins (IC2 ΔERM) or the cytoplasmic tail (IC2 ΔTAIL) failed to restore junctions. ICAM-2-dependent Rac-1 activation was also decreased in these mutant cell lines. Barrier function, measured in vitro via transendothelial electrical resistance, was decreased in IC2neg cells, both in resting conditions and after thrombin stimulation. This was dependent on ICAM-2 signalling to the small GTPase Rac-1, since transendothelial electrical resistance of IC2neg cells was restored by constitutively active Rac-1. In vivo, thrombin-induced extravasation of FITC-labeled albumin measured by intravital fluorescence microscopy in the mouse cremaster muscle showed that permeability was increased in ICAM-2-deficient mice compared to controls. CONCLUSIONS: These results indicate that ICAM-2 regulates endothelial barrier function and permeability through a pathway involving N-Cadherin, ERMs and Rac-1.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability , Cell Adhesion Molecules/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Antigens, CD/genetics , Binding Sites , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Cytoskeletal Proteins/metabolism , Gap Junctions/metabolism , Humans , Membrane Proteins/metabolism , Mice , Microfilament Proteins/metabolism , Protein Binding , Protein Transport , Signal Transduction
10.
J Biol Chem ; 287(15): 12331-42, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22337883

ABSTRACT

The interaction of transcription factors with specific DNA sequences is critical for activation of gene expression programs. In endothelial cells (EC), the transcription factor NF-κB is important in the switch from quiescence to activation, and is tightly controlled to avoid excessive inflammation and organ damage. Here we describe a novel mechanism that controls the activation of NF-κB in EC. The transcription factor Erg, the most highly expressed ETS member in resting EC, controls quiescence by repressing proinflammatory gene expression. Focusing on intercellular adhesion molecule 1(ICAM)-1 as a model, we identify two ETS binding sites (EBS -118 and -181) within the ICAM-1 promoter required for Erg-mediated repression. We show that Erg binds to both EBS -118 and EBS -181, the latter located within the NF-κB binding site. Interestingly, inhibition of Erg expression in quiescent EC results in increased NF-κB-dependent ICAM-1 expression, indicating that Erg represses basal NF-κB activity. Erg prevents NF-κB p65 from binding to the ICAM-1 promoter, suggesting a direct mechanism of interference. Gene set enrichment analysis of transcriptome profiles of Erg and NF-κB-dependent genes, together with chromatin immunoprecipitation (ChIP) studies, reveals that this mechanism is common to other proinflammatory genes, including cIAP-2 and IL-8. These results identify a role for Erg as a gatekeeper controlling vascular inflammation, thus providing an important barrier to protect against inappropriate endothelial activation.


Subject(s)
Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/physiology , Trans-Activators/physiology , Transcription Factor RelA/metabolism , Binding Sites , Binding, Competitive , Cells, Cultured , DNA/chemistry , Electrophoretic Mobility Shift Assay , Gene Expression Profiling , Genes, Reporter , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Luciferases, Renilla/biosynthesis , Luciferases, Renilla/genetics , Promoter Regions, Genetic , Protein Binding , Resting Phase, Cell Cycle , Trans-Activators/chemistry , Trans-Activators/metabolism , Transcription Initiation Site , Transcription, Genetic , Transcriptional Regulator ERG
11.
J Mol Endocrinol ; 71(2)2023 08 01.
Article in English | MEDLINE | ID: mdl-37306684

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) are highly specialised endothelial cells that form the liver microvasculature. LSECs maintain liver homeostasis, scavenging bloodborne molecules, regulating immune response, and actively promoting hepatic stellate cell quiescence. These diverse functions are underpinned by a suite of unique phenotypical attributes distinct from other blood vessels. In recent years, studies have begun to reveal the specific contributions of LSECs to liver metabolic homeostasis and how LSEC dysfunction associates with disease aetiology. This has been particularly evident in the context of non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, which is associated with the loss of key LSEC phenotypical characteristics and molecular identity. Comparative transcriptome studies of LSECs and other endothelial cells, together with rodent knockout models, have revealed that loss of LSEC identity through disruption of core transcription factor activity leads to impaired metabolic homeostasis and to hallmarks of liver disease. This review explores the current knowledge of LSEC transcription factors, covering their roles in LSEC development and maintenance of key phenotypic features, which, when disturbed, lead to loss of liver metabolic homeostasis and promote features of chronic liver diseases, such as non-alcoholic liver disease.


Subject(s)
Endothelial Cells , Non-alcoholic Fatty Liver Disease , Humans , Endothelial Cells/metabolism , Transcription Factors/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Homeostasis
12.
bioRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798267

ABSTRACT

Background: During infectious diseases, pro-inflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. Methods: Cytokine-dependent ubiquitination and proteasomal degradation of ERG was analyzed in cultured Human Umbilical Vein ECs (HUVECs). Systemic administration of TNFα or the bacterial cell wall component lipopolysaccharide (LPS) was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs ( Erg fl/fl ;Cdh5(PAC)Cre ERT2 ), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. Results: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or LPS resulted in a rapid and substantial degradation of ERG within lung ECs, but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Erg fl/fl ;Cdh5(PAC)-Cre ERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek , a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. Conclusions: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.

13.
Nat Med ; 29(3): 679-688, 2023 03.
Article in English | MEDLINE | ID: mdl-36928819

ABSTRACT

The genetic etiologies of more than half of rare diseases remain unknown. Standardized genome sequencing and phenotyping of large patient cohorts provide an opportunity for discovering the unknown etiologies, but this depends on efficient and powerful analytical methods. We built a compact database, the 'Rareservoir', containing the rare variant genotypes and phenotypes of 77,539 participants sequenced by the 100,000 Genomes Project. We then used the Bayesian genetic association method BeviMed to infer associations between genes and each of 269 rare disease classes assigned by clinicians to the participants. We identified 241 known and 19 previously unidentified associations. We validated associations with ERG, PMEPA1 and GPR156 by searching for pedigrees in other cohorts and using bioinformatic and experimental approaches. We provide evidence that (1) loss-of-function variants in the Erythroblast Transformation Specific (ETS)-family transcription factor encoding gene ERG lead to primary lymphoedema, (2) truncating variants in the last exon of transforming growth factor-ß regulator PMEPA1 result in Loeys-Dietz syndrome and (3) loss-of-function variants in GPR156 give rise to recessive congenital hearing impairment. The Rareservoir provides a lightweight, flexible and portable system for synthesizing the genetic and phenotypic data required to study rare disease cohorts with tens of thousands of participants.


Subject(s)
Genome-Wide Association Study , Rare Diseases , Humans , Rare Diseases/genetics , Bayes Theorem , Genotype , Genome-Wide Association Study/methods , Phenotype , Membrane Proteins
14.
Blood ; 116(4): 640-8, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20418283

ABSTRACT

We examined the role that N-linked glycans play in the synthesis and expression of von Willebrand Factor (VWF). Blocking the addition of N-linked glycans (NLGs) or inhibiting initial glycan processing prevented secretion of VWF. To determine whether specific glycosylation sites were important, the 16 VWF N-linked glycosylation sites were mutated followed by expression in HEK293T cells. Four NLG mutants affected VWF expression: N99Q (D1 domain), N857Q (D' domain), N2400Q (B1 domain), and N2790Q (CK domain) either abolished or reduced secretion of VWF and this was confirmed by metabolic labeling. Multimer analysis of mutant N2790Q cell lysate revealed an increase in VWF monomers, which was also observed when the isolated CK domain was expressed with N2790 mutated. Immunofluorescence microscopy showed that mutants N99Q, N857Q, and N2790Q were primarily retained within the ER, producing only few pseudo Weibel-Palade bodies over longer time periods compared with wtVWF. All the variants also showed an increase in free thiol reactivity. This was greatest with N857Q and D4-C2 NLG mutants, which had approximately 6-fold and 3- to 4-fold more free thiol reactivity than wtVWF. These data provide further evidence of the critical role that individual N-linked glycans play in determining VWF synthesis and expression.


Subject(s)
von Willebrand Factor/biosynthesis , von Willebrand Factor/metabolism , Amino Acid Substitution/physiology , Antigens, Bacterial/chemistry , Antigens, Bacterial/metabolism , Catalytic Domain/genetics , Cells, Cultured , Gene Expression , Glycosylation , Humans , Models, Biological , Mutant Proteins/metabolism , Mutation/physiology , Polysaccharides/metabolism , Protein Processing, Post-Translational/physiology , Protein Transport , Substrate Specificity , Tissue Distribution , von Willebrand Factor/chemistry , von Willebrand Factor/genetics
15.
Arterioscler Thromb Vasc Biol ; 31(1): 142-50, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20966395

ABSTRACT

OBJECTIVE: To test whether ETS-related gene (Erg) inhibits tumor necrosis factor (TNF)-α-dependent endothelial activation and inflammation. METHODS AND RESULTS: Endothelial activation underlies many vascular diseases, including atherosclerosis. Endothelial activation by proinflammatory cytokines decreases expression of the ETS transcription factor Erg. By using human umbilical vein endothelial cells (HUVECs), we showed that Erg overexpression by adenovirus (AdErg) repressed basal and TNF-α-induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), and interleukin 8 (IL-8). Erg inhibited TNF-α-dependent activation of the ICAM-1 promoter, nuclear factor (NF)-κB activity, and NF-κB p65 phosphorylation. Basal NF-κB activity was also inhibited by Erg overexpression. Chromatin immunoprecipitation showed that Erg binds to the ICAM-1 proximal promoter region, which contains 7 putative ETS binding sites. To test the anti-inflammatory role of Erg in vivo, we used a murine model of TNF-α-dependent acute inflammation. The injection of AdErg into the paw decreased TNF-α-induced inflammation compared with control. Finally, staining of human coronary plaques showed loss of Erg expression from the endothelium overlaying active plaque shoulders. CONCLUSIONS: We have identified a novel physiological anti-inflammatory pathway under the control of the transcription factor Erg; this pathway inhibits NF-κB-dependent transcription and TNF-α-induced inflammation in vivo. These results suggest a novel approach to anti-inflammatory therapies.


Subject(s)
Endothelial Cells/immunology , Inflammation Mediators/metabolism , Inflammation/prevention & control , NF-kappa B/metabolism , Trans-Activators/metabolism , Animals , Base Sequence , Binding Sites , Cells, Cultured , Coronary Artery Disease/metabolism , Disease Models, Animal , Down-Regulation , Humans , Inflammation/genetics , Inflammation/immunology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Phosphorylation , Promoter Regions, Genetic , RNA Interference , Time Factors , Trans-Activators/genetics , Transcription Factor RelA/metabolism , Transcriptional Regulator ERG , Transfection , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
16.
Nat Cardiovasc Res ; 1: 882-899, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36713285

ABSTRACT

Current dogma dictates that during adulthood, endothelial cells (ECs) are locked in an immutable stable homeostatic state. By contrast, herein we show that maintenance of EC fate and function are linked and active processes, which depend on the constitutive cooperativity of only two ETS-transcription factors (TFs) ERG and Fli1. While deletion of either Fli1 or ERG manifest subtle vascular dysfunction, their combined genetic deletion in adult EC results in acute vasculopathy and multiorgan failure, due to loss of EC fate and integrity, hyperinflammation, and spontaneous thrombosis, leading to death. ERG and Fli1 co-deficiency cause rapid transcriptional silencing of pan- and organotypic vascular core genes, with dysregulation of inflammation and coagulation pathways. Vascular hyperinflammation leads to impaired hematopoiesis with myeloid skewing. Accordingly, enforced ERG and FLI1 expression in adult human mesenchymal stromal cells activates vascular programs and functionality enabling engraftment of perfusable vascular network. GWAS-analysis identified vascular diseases are associated with FLI1/Erg mutations. Constitutive expression of ERG and Fli1 uphold EC fate, physiological function, and resilience in adult vasculature; while their functional loss can contribute to systemic human diseases.

18.
Biochem Soc Trans ; 37(Pt 6): 1248-53, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19909256

ABSTRACT

Transcription factors of the ETS family are important regulators of endothelial gene expression. Here, we review the evidence that ETS factors regulate angiogenesis and briefly discuss the target genes and pathways involved. Finally, we discuss novel evidence that shows how these transcription factors act in a combinatorial fashion with others, through composite sites that may be crucial in determining endothelial specificity in gene transcription.


Subject(s)
Neovascularization, Physiologic/physiology , Proto-Oncogene Proteins c-ets/metabolism , Animals , Endothelium, Vascular/physiology , Gene Expression Regulation, Developmental , Humans , Phylogeny , Protein Binding , Proto-Oncogene Proteins c-ets/classification , Proto-Oncogene Proteins c-ets/genetics
20.
Nat Commun ; 8(1): 895, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026072

ABSTRACT

The role of the endothelium in protecting from chronic liver disease and TGFß-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFß-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (Erg cEC-Het ) and inducible homozygous deficient mice (Erg iEC-KO ), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL4)-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease.The transcription factor ERG is key to endothelial lineage specification and vascular homeostasis. Here the authors show that ERG balances TGFß signalling through the SMAD1 and SMAD3 pathways, protecting the endothelium from endothelial-to-mesenchymal transition and consequent liver fibrosis in mice via a SMAD3-dependent mechanism.


Subject(s)
Endothelial Cells/metabolism , Liver Cirrhosis, Biliary/pathology , Liver/pathology , Oncogene Proteins/metabolism , Transcriptional Regulator ERG/metabolism , Transforming Growth Factor beta/metabolism , Animals , Carbon Tetrachloride/toxicity , Cells, Cultured , Down-Regulation , End Stage Liver Disease/etiology , End Stage Liver Disease/surgery , Epithelial-Mesenchymal Transition , Etanercept/pharmacology , Etanercept/therapeutic use , Female , Fibrosis , Human Umbilical Vein Endothelial Cells , Humans , Liver/drug effects , Liver/surgery , Liver Cirrhosis, Biliary/complications , Liver Cirrhosis, Biliary/therapy , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/drug therapy , Liver Cirrhosis, Experimental/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oncogene Proteins/genetics , Signal Transduction/drug effects , Smad1 Protein/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transcriptional Regulator ERG/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL