Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Chem Biol ; 15(3): 304-313, 2019 03.
Article in English | MEDLINE | ID: mdl-30692685

ABSTRACT

MALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-κB activation. We discovered nanomolar, selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580, locking the protease in an inactive conformation. Interestingly, we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency. We show that the loss of tryptophan weakened interactions between the paracaspase and C-terminal immunoglobulin MALT1 domains resulting in protein instability, reduced protein levels and functions. Upon binding of allosteric inhibitors of increasing potency, we found proportionate increased stabilization of MALT1-W580S to reach that of wild-type MALT1. With restored levels of stable MALT1 protein, the most potent of the allosteric inhibitors rescued NF-κB and JNK signaling in patient lymphocytes. Following compound washout, MALT1 substrate cleavage was partly recovered. Thus, a molecular corrector rescues an enzyme deficiency by substituting for the mutated residue, inspiring new potential precision therapies to increase mutant enzyme activity in other deficiencies.


Subject(s)
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Gene Expression Regulation , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Lymphocytes/metabolism , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Male , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/ultrastructure , NF-kappa B/metabolism , Neoplasm Proteins , Signal Transduction
2.
Proc Natl Acad Sci U S A ; 113(34): 9504-8, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27506795

ABSTRACT

NifEN is a biosynthetic scaffold for the cofactor of Mo-nitrogenase (designated the M-cluster). Previous studies have revealed the sequence and structural homology between NifEN and NifDK, the catalytic component of nitrogenase. However, direct proof for the functional homology between the two proteins has remained elusive. Here we show that, upon maturation of a cofactor precursor (designated the L-cluster) on NifEN, the cluster species extracted from NifEN is spectroscopically equivalent and functionally interchangeable with the native M-cluster extracted from NifDK. Both extracted clusters display nearly indistinguishable EPR features, X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS) spectra and reconstitution activities, firmly establishing the M-cluster-bound NifEN (designated NifEN(M)) as the only protein other than NifDK to house the unique nitrogenase cofactor. Iron chelation experiments demonstrate a relocation of the cluster from the surface to its binding site within NifEN(M) upon maturation, which parallels the insertion of M-cluster into an analogous binding site in NifDK, whereas metal analyses suggest an asymmetric conformation of NifEN(M) with an M-cluster in one αß-half and an empty cluster-binding site in the other αß-half, which led to the proposal of a stepwise assembly mechanism of the M-cluster in the two αß-dimers of NifEN. Perhaps most importantly, NifEN(M) displays comparable ATP-independent substrate-reducing profiles to those of NifDK, which establishes the M-cluster-bound αß-dimer of NifEN(M) as a structural and functional mimic of one catalytic αß-half of NifDK while suggesting the potential of this protein as a useful tool for further investigations of the mechanistic details of nitrogenase.


Subject(s)
Azotobacter vinelandii/chemistry , Coenzymes/chemistry , Molybdenum/chemistry , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Protein Subunits/chemistry , Azotobacter vinelandii/enzymology , Catalytic Domain , Coenzymes/isolation & purification , Coenzymes/metabolism , Iron/chemistry , Iron/metabolism , Iron Chelating Agents/chemistry , Molybdenum/metabolism , Molybdoferredoxin/isolation & purification , Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Protein Binding , Protein Multimerization , Protein Subunits/metabolism
3.
Mol Cell Proteomics ; 12(10): 2935-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23764502

ABSTRACT

One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.


Subject(s)
Glycoproteins/metabolism , Kallikreins/metabolism , Polysaccharides/metabolism , Prostate-Specific Antigen/metabolism , Chromatography, Liquid , Glycosylation , Humans , Laboratories , Mass Spectrometry/methods , Proteomics/methods , Reproducibility of Results
4.
Proc Natl Acad Sci U S A ; 106(44): 18474-8, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19828444

ABSTRACT

The P-cluster of nitrogenase is one of the most complex biological metallocenters known to date. Despite the recent advances in the chemical synthesis of P-cluster topologs, the biosynthetic mechanism of P-cluster has not been well defined. Here, we present a combined biochemical, electron paramagnetic resonance, and X-ray absorption spectroscopy/extended X-ray absorption fine-structure investigation of the maturation process of P-clusters in DeltanifH molybdenum-iron (MoFe) protein. Our data indicate that the previously identified, [Fe(4)S(4)]-like cluster pairs in DeltanifH MoFe protein are indeed the precursors to P-clusters, which can be reductively coupled into the mature [Fe(8)S(7)] structures in the presence of Fe protein, MgATP, and dithionite. Moreover, our observation of a biphasic maturation pattern of P-clusters in DeltanifH MoFe protein provides dynamic proof for the previously hypothesized, stepwise assembly mechanism of the two P-clusters in the alpha(2)beta(2)-tetrameric MoFe protein, i.e., one P-cluster is formed in one alphabeta dimer before the other in the second alphabeta dimer.


Subject(s)
Azotobacter vinelandii/enzymology , Metals/chemistry , Molybdoferredoxin/metabolism , Models, Molecular , Mutation/genetics , Spectrum Analysis , Time Factors , X-Rays
5.
Inorg Chem ; 50(15): 7123-8, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21718019

ABSTRACT

The iron (Fe) proteins of molybdenum (Mo)-, vanadium (V)-, and iron (Fe)-only nitrogenases are encoded by nifH, vnfH, and anfH, respectively. While the nifH-encoded Fe protein has been extensively studied over recent years, information regarding the properties of the vnfH- and anfH-encoded Fe proteins has remained scarce. Here, we present a combined biochemical, electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy (XAS) analysis of the [Fe(4)S(4)] clusters of NifH, VnfH, and AnfH of Azotobacter vinelandii . Our data show that all three Fe proteins contain [Fe(4)S(4)] clusters of very similar spectroscopic and geometric structural properties, although NifH differs more from VnfH and AnfH with regard to the electronic structure. These observations have an interesting impact on the theory of the plausible sequence of evolution of nitrogenase Fe proteins. More importantly, the results presented herein provide a platform for future investigations of the differential activities of the three Fe proteins in nitrogenase biosynthesis and catalysis.


Subject(s)
Iron/chemistry , Models, Molecular , Oxidoreductases/chemistry , Sequence Homology, Amino Acid , Sulfur/chemistry , Amino Acid Sequence , Azotobacter vinelandii/enzymology , Electrons , Molecular Sequence Data , Protein Conformation , Spectrum Analysis
6.
J Am Chem Soc ; 132(36): 12612-8, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20718463

ABSTRACT

The cofactors of the Mo- and V-nitrogenases (i.e., FeMoco and FeVco) are homologous metal centers with distinct catalytic properties. So far, there has been only one report on the isolation of FeVco from Azotobacter chroococcum. However, this isolated FeVco species did not carry the full substrate-reducing capacity, as it is unable to restore the N(2)-reducing ability of the cofactor-deficient MoFe protein. Here, we report the isolation and characterization of a fully active species of FeVco from A. vinelandii. Our metal and activity analyses show that FeVco has been extracted intact, carrying with it the characteristic capacity to reduce C(2)H(2) to C(2)H(6) and, perhaps even more importantly, the ability to reduce N(2) to NH(3). Moreover, our EPR and XAS/EXAFS investigations indicate that FeVco is similar to, yet distinct from FeMoco in electronic properties and structural topology, which could account for the differences in the reactivity of the two cofactors. The outcome of this study not only permits the proposal of the first EXAFS-based structural model of the isolated FeVco but also lays a foundation for future catalytic and structural investigations of this unique metallocluster.


Subject(s)
Molybdenum/metabolism , Nitrogenase/metabolism , Vanadium/metabolism , Acetylene/chemistry , Ammonia/chemical synthesis , Ammonia/chemistry , Azotobacter/enzymology , Biocatalysis , Crystallography, X-Ray , Ethane/chemical synthesis , Ethane/chemistry , Models, Molecular , Molybdenum/chemistry , Nitrogen/chemistry , Nitrogenase/chemistry , Nitrogenase/isolation & purification , Substrate Specificity , Vanadium/chemistry
7.
J Am Chem Soc ; 131(26): 9321-5, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19514721

ABSTRACT

Mo-nitrogenase catalyzes the reduction of dinitrogen to ammonia at the cofactor (i.e., FeMoco) site of its MoFe protein component. Biosynthesis of FeMoco involves NifEN, a scaffold protein that hosts the maturation of a precursor to a mature FeMoco before it is delivered to the target location in the MoFe protein. Previously, we have shown that the NifEN-bound precursor could be converted in vitro to a fully complemented "FeMoco" in the presence of 2 mM dithionite. However, such a conversion was incomplete, and Mo was only loosely associated with the NifEN-bound "FeMoco". Here we report the optimized maturation of the NifEN-associated precursor in 20 mM dithionite. Activity analyses show that upon the optimal conversion of precursor to "FeMoco", NifEN is capable of activating a FeMoco-deficient form of MoFe protein to the same extent as the isolated FeMoco. Furthermore, EPR and XAS/EXAFS analyses reveal the presence of a tightly organized Mo site in NifEN-bound "FeMoco", which allows the observation of a FeMoco-like S = 3/2 EPR signal and the modeling of a NifEN-bound "FeMoco" that adopts a conformation very similar to that of the MoFe protein-associated FeMoco. The sensitivity of FeMoco maturation to dithionite concentration suggests an essential role of redox chemistry in this process, and the optimal potential of dithionite solution could serve as a guideline for future identification of in vivo electron donors for FeMoco maturation.


Subject(s)
Azotobacter vinelandii/enzymology , Bacterial Proteins/metabolism , Molybdoferredoxin/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Crystallography, X-Ray , Dithionite/chemistry , Genes, Bacterial , Models, Molecular , Molybdoferredoxin/chemistry , Molybdoferredoxin/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Protein Conformation
9.
Nat Commun ; 6: 8777, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26525107

ABSTRACT

Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.


Subject(s)
Caspases/genetics , Immunologic Deficiency Syndromes/genetics , Lymphocytes/immunology , NF-kappa B/metabolism , Neoplasm Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Adolescent , Adult , Animals , Antigen-Presenting Cells , B-Lymphocytes/immunology , Caspases/immunology , Caspases/metabolism , Family , Female , Fluorescent Antibody Technique , GTPase-Activating Proteins/metabolism , Gene Knock-In Techniques , Humans , I-kappa B Kinase/metabolism , Immunoblotting , Immunologic Deficiency Syndromes/immunology , Immunoprecipitation , In Vitro Techniques , Intracellular Signaling Peptides and Proteins/metabolism , Leukocytes, Mononuclear , Male , Mass Spectrometry , Mice , Microscopy, Confocal , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Mutation , NF-kappa B/immunology , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Palatine Tonsil , Proteomics , RNA-Binding Proteins/metabolism , T-Lymphocytes/immunology , Tandem Mass Spectrometry , Transcription Factors , Ubiquitination/immunology
SELECTION OF CITATIONS
SEARCH DETAIL