Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Brain Behav Evol ; 91(2): 109-117, 2018.
Article in English | MEDLINE | ID: mdl-29894995

ABSTRACT

Since the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas. These volumes were extracted from MRI of 46 brains of 38 species from the Netherlands Institute of Neuroscience Primate Brain Bank, scanned at high resolution with a 9.4-T scanner, plus a further 7 donated MRI of 4 primate species. Partial measurements were made on an additional 8 brains of 5 species. We make the dataset and MRI scans available online in the hope that they will be of value to researchers conducting comparative studies of primate evolution.


Subject(s)
Brain/anatomy & histology , Neuroanatomy/standards , Primates , Animals , Biological Evolution , Databases, Factual , Magnetic Resonance Imaging
2.
J Neuroinflammation ; 12: 169, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26377397

ABSTRACT

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) in the common marmoset monkey (Callithrix jacchus) is a relevant preclinical model for translational research into immunopathogenic mechanisms operating in multiple sclerosis (MS). Prior studies showed a core pathogenic role of T and B cells specific for myelin oligodendrocyte glycoprotein (MOG). However, in those studies, the quality of the response against MOG epitopes was strongly biased by bacterial antigens in the complete Freund's adjuvant (CFA), in which the immunizing recombinant human (rh) MOG protein had been formulated. In response to the need of a more refined EAE model, we have tested whether disease could also be induced with rhMOG in incomplete Freund's adjuvant (IFA). METHOD: Marmosets were immunized with rhMOG emulsified in IFA in the dorsal skin. Monkeys that did not develop neurological deficit were given booster immunizations at 28-day interval with the same antigen preparation. In a second experiment, three marmoset twin pairs were sensitized against MOG peptides in IFA to study a possibility for suppressive activity towards pathogenic T cells directed against the encephalitogenic epitope MOG40-48. RESULTS: Despite the absence of strong danger signals in the rhMOG/IFA inoculum, all monkeys developed clinically evident EAE symptoms. Moreover, in all monkeys, demyelinated lesions were present in the white matter and in two cases also in the cortical grey matter. Immune profiling at height of the disease showed a dominant T cell response against the overlapping peptides 14-36 and 24-46, but reactivity against the pathogenically most relevant peptide 34-56 was conspicuously absent. In the second experiment, there was an indication for a possible suppressive mechanism. CONCLUSIONS: Immunization of marmoset monkeys with rhMOG in IFA elicits clinical EAE in all animals. Moreover, rhMOG contains pathogenic and regulatory epitopes, but the pathogenic hierarchy of rhMOG epitopes is strongly influenced by the adjuvant in which the protein is formulated.


Subject(s)
Callithrix , Encephalomyelitis, Autoimmune, Experimental/immunology , Freund's Adjuvant/immunology , Lipids/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Animals , Antibodies/blood , Brain/metabolism , Brain/pathology , Cell Proliferation/drug effects , Cytokines/blood , Cytokines/genetics , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Freund's Adjuvant/adverse effects , Humans , Immunization/adverse effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lipids/adverse effects , Lymphocyte Activation/immunology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Myelin-Oligodendrocyte Glycoprotein/adverse effects , Peptides/adverse effects , Peptides/immunology , Recombinant Proteins/adverse effects , Recombinant Proteins/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , T-Lymphocytes/immunology
3.
J Immunol ; 190(5): 1961-73, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23365083

ABSTRACT

The immune system is characterized by the preferential migration of lymphocytes through specific tissues (i.e., tissue tropism). Tissue tropism is mediated, in part, by the α(4) integrins expressed by T lymphocytes. The α(4)ß(1) integrin mediates migration of memory T lymphocytes into the CNS, whereas the α(4)ß(7) integrin mediates migration preferentially into gastrointestinal tissue. This paradigm was established primarily from investigations in rodents; thus, the objective of this investigation was to determine if blocking the α(4)ß(7) integrin exclusively would affect migration of T lymphocytes into the CNS of primates. The effects of the dual α(4)ß(1) and α(4)ß(7) antagonist natalizumab were compared with those of the α(4)ß(7) antagonist vedolizumab on experimental autoimmune encephalomyelitis in the rhesus monkey. Animals received an initial i.v. bolus of placebo, natalizumab (30 mg/kg), or vedolizumab (30 mg/kg) before intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein and then Ab once weekly thereafter. Natalizumab prevented CNS inflammation and demyelination significantly (p < 0.05), compared with time-matched placebo control animals, whereas vedolizumab did not inhibit these effects, despite saturating the α(4)ß(7) integrin in each animal for the duration of the investigation. These results demonstrate that blocking α(4)ß(7) exclusively does not inhibit immune surveillance of the CNS in primates.


Subject(s)
Autoimmunity/drug effects , Cell Migration Inhibition/immunology , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Integrin alpha4beta1/antagonists & inhibitors , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/immunology , Cell Movement/drug effects , Cell Movement/immunology , Central Nervous System/drug effects , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Immunologic Surveillance/drug effects , Injections, Intravenous , Integrin alpha4beta1/immunology , Macaca mulatta , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , Natalizumab , Organ Specificity , Placebos , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
4.
JAMA Netw Open ; 7(5): e2410819, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691356

ABSTRACT

Importance: In 2018, the first online adaptive magnetic resonance (MR)-guided radiotherapy (MRgRT) system using a 1.5-T MR-equipped linear accelerator (1.5-T MR-Linac) was clinically introduced. This system enables online adaptive radiotherapy, in which the radiation plan is adapted to size and shape changes of targets at each treatment session based on daily MR-visualized anatomy. Objective: To evaluate safety, tolerability, and technical feasibility of treatment with a 1.5-T MR-Linac, specifically focusing on the subset of patients treated with an online adaptive strategy (ie, the adapt-to-shape [ATS] approach). Design, Setting, and Participants: This cohort study included adults with solid tumors treated with a 1.5-T MR-Linac enrolled in Multi Outcome Evaluation for Radiation Therapy Using the MR-Linac (MOMENTUM), a large prospective international study of MRgRT between February 2019 and October 2021. Included were adults with solid tumors treated with a 1.5-T MR-Linac. Data were collected in Canada, Denmark, The Netherlands, United Kingdom, and the US. Data were analyzed in August 2023. Exposure: All patients underwent MRgRT using a 1.5-T MR-Linac. Radiation prescriptions were consistent with institutional standards of care. Main Outcomes and Measures: Patterns of care, tolerability, and technical feasibility (ie, treatment completed as planned). Acute high-grade radiotherapy-related toxic effects (ie, grade 3 or higher toxic effects according to Common Terminology Criteria for Adverse Events version 5.0) occurring within the first 3 months after treatment delivery. Results: In total, 1793 treatment courses (1772 patients) were included (median patient age, 69 years [range, 22-91 years]; 1384 male [77.2%]). Among 41 different treatment sites, common sites were prostate (745 [41.6%]), metastatic lymph nodes (233 [13.0%]), and brain (189 [10.5%]). ATS was used in 1050 courses (58.6%). MRgRT was completed as planned in 1720 treatment courses (95.9%). Patient withdrawal caused 5 patients (0.3%) to discontinue treatment. The incidence of radiotherapy-related grade 3 toxic effects was 1.4% (95% CI, 0.9%-2.0%) in the entire cohort and 0.4% (95% CI, 0.1%-1.0%) in the subset of patients treated with ATS. There were no radiotherapy-related grade 4 or 5 toxic effects. Conclusions and Relevance: In this cohort study of patients treated on a 1.5-T MR-Linac, radiotherapy was safe and well tolerated. Online adaptation of the radiation plan at each treatment session to account for anatomic variations was associated with a low risk of acute grade 3 toxic effects.


Subject(s)
Neoplasms , Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Radiotherapy, Image-Guided/adverse effects , Male , Female , Middle Aged , Aged , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Adult , Prospective Studies , Magnetic Resonance Imaging/methods , Feasibility Studies , Cohort Studies , Aged, 80 and over
5.
Eur J Immunol ; 42(1): 217-27, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21928277

ABSTRACT

Induction of experimental autoimmune encephalomyelitis (EAE) has been documented in common marmosets using peptide 34-56 from human myelin/oligodendrocyte glycoprotein (MOG(34-56) ) in incomplete Freund's adjuvant (IFA). Here, we report that this EAE model is associated with widespread demyelination of grey and white matter. We performed an in-depth analysis of the specificity, MHC restriction and functions of the activated T cells in the model, which likely cause EAE in an autoantibody-independent manner. T-cell lines isolated from blood and lymphoid organs of animals immunized with MOG(34-56) displayed high production of IL-17A and specific lysis of MOG(34-56) -pulsed EBV B-lymphoblastoid cells as typical hallmarks. Cytotoxicity was directed at the epitope MOG(40-48) presented by the non-classical MHC class Ib allele Caja-E, which is orthologue to HLA-E and is expressed in non-inflamed brain. In vivo activated T cells identified by flow cytometry in cultures with MOG(34-56,) comprised CD4(+) CD56(+) and CD4(+) CD8(+) CD56(+) T cells. Furthermore, phenotypical analysis showed that CD4(+) CD8(+) CD56(+) T cells also expressed CD27, but CD16, CD45RO, CD28 and CCR7 were absent. These results show that, in the MOG34-56/IFA marmoset EAE model, a Caja-E-restricted population of autoreactive cytotoxic T cells plays a key role in the process of demyelination in the grey and white matter.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myelin Sheath/immunology , T-Lymphocytes/immunology , Adjuvants, Immunologic , Animals , Callithrix , Histocompatibility Antigens Class I/immunology , Humans , Interleukin-17/immunology , K562 Cells , Myelin Proteins , Myelin-Oligodendrocyte Glycoprotein , RNA/chemistry , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction , HLA-E Antigens
6.
Psychopharmacology (Berl) ; 239(8): 2457-2470, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35419637

ABSTRACT

RATIONALE: Compulsivity often develops during childhood and is associated with elevated glutamate levels within the frontostriatal system. This suggests that anti-glutamatergic drugs, like memantine, may be an effective treatment. OBJECTIVE: Our goal was to characterize the acute and chronic effect of memantine treatment on compulsive behavior and frontostriatal network structure and function in an adolescent rat model of compulsivity. METHODS: Juvenile Sprague-Dawley rats received repeated quinpirole, resulting in compulsive checking behavior (n = 32; compulsive) or saline injections (n = 32; control). Eight compulsive and control rats received chronic memantine treatment, and eight compulsive and control rats received saline treatment for seven consecutive days between the 10th and 12th quinpirole/saline injection. Compulsive checking behavior was assessed, and structural and functional brain connectivity was measured with diffusion MRI and resting-state fMRI before and after treatment. The other rats received an acute single memantine (compulsive: n = 12; control: n = 12) or saline injection (compulsive: n = 4; control: n = 4) during pharmacological MRI after the 12th quinpirole/saline injection. An additional group of rats received a single memantine injection after a single quinpirole injection (n = 8). RESULTS: Memantine treatment did not affect compulsive checking nor frontostriatal structural and functional connectivity in the quinpirole-induced adolescent rat model. While memantine activated the frontal cortex in control rats, no significant activation responses were measured after single or repeated quinpirole injections. CONCLUSIONS: The lack of a memantine treatment effect in quinpirole-induced compulsive adolescent rats may be partly explained by the interaction between glutamatergic and dopaminergic receptors in the brain, which can be evaluated with functional MRI.


Subject(s)
Memantine , Obsessive-Compulsive Disorder , Animals , Compulsive Behavior/chemically induced , Compulsive Behavior/drug therapy , Disease Models, Animal , Dopamine Agonists/pharmacology , Memantine/pharmacology , Obsessive-Compulsive Disorder/chemically induced , Obsessive-Compulsive Disorder/drug therapy , Quinpirole/pharmacology , Rats , Rats, Long-Evans , Rats, Sprague-Dawley
7.
Eur J Nucl Med Mol Imaging ; 38(3): 552-61, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21063706

ABSTRACT

PURPOSE: Small-animal single photon emission computed tomography (SPECT) with focused multi-pinhole collimation geometries allows scanning modes in which large amounts of photons can be collected from specific volumes of interest. Here we present new tools that improve targeted imaging of specific organs and tumours, and validate the effects of improved targeting of the pinhole focus. METHODS: A SPECT system with 75 pinholes and stationary detectors was used (U-SPECT-II). An XYZ stage automatically translates the animal bed with a specific sequence in order to scan a selected volume of interest. Prior to stepping the animal through the collimator, integrated webcams acquire images of the animal. Using sliders, the user designates the desired volume to be scanned (e.g. a xenograft or specific organ) on these optical images. Optionally projections of an atlas are overlaid semiautomatically to locate specific organs. In order to assess the effects of more targeted imaging, scans of a resolution phantom and a mouse myocardial phantom, as well as in vivo mouse cardiac and tumour scans, were acquired with increased levels of targeting. Differences were evaluated in terms of count yield, hot rod visibility and contrast-to-noise ratio. RESULTS: By restricting focused SPECT scans to a 1.13-ml resolution phantom, count yield was increased by a factor 3.6, and visibility of small structures was significantly enhanced. At equal noise levels, the small-lesion contrast measured in the myocardial phantom was increased by 42%. Noise in in vivo images of a tumour and the mouse heart was significantly reduced. CONCLUSION: Targeted pinhole SPECT improves images and can be used to shorten scan times. Scan planning with optical cameras provides an effective tool to exploit this principle without the necessity for additional X-ray CT imaging.


Subject(s)
Tomography, Emission-Computed, Single-Photon/instrumentation , Animals , Feasibility Studies , Female , Heart/diagnostic imaging , Image Processing, Computer-Assisted , Mice , Optical Devices , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon/economics
8.
Sci Rep ; 11(1): 12468, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127773

ABSTRACT

Traumatic brain injury (TBI) is the main cause of disability and mortality in individuals under the age of 45 years. Elucidation of the molecular and structural alterations in brain tissue due to TBI is crucial to understand secondary and long-term effects after traumatic brain injury, and to develop and apply the correct therapies. In the current study, the molecular effects of TBI were investigated in rat brain at 24 h and 1 month after the injury to determine acute and chronic effects, respectively by Fourier transform infrared imaging. This study reports the time-dependent contextual and structural effects of TBI on hippocampal brain tissue. A mild form of TBI was induced in 11-week old male Sprague Dawley rats by weight drop. Band area and intensity ratios, band frequency and bandwidth values of specific spectral bands showed that TBI causes significant structural and contextual global changes including decrease in carbonyl content, unsaturated lipid content, lipid acyl chain length, membrane lipid order, total protein content, lipid/protein ratio, besides increase in membrane fluidity with an altered protein secondary structure and metabolic activity in hippocampus 24 h after injury. However, improvement and/or recovery effects in these parameters were observed at one month after TBI.


Subject(s)
Brain Injuries, Traumatic/diagnosis , Hippocampus/pathology , Animals , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Hippocampus/cytology , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Injury Severity Score , Lipid Metabolism , Lipids/analysis , Male , Membrane Fluidity , Protein Structure, Secondary , Rats , Spectroscopy, Fourier Transform Infrared , Time Factors
9.
J Neurotrauma ; 38(12): 1642-1653, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33198560

ABSTRACT

Despite clinical symptoms, a large majority of people with mild traumatic brain injury (TBI) have normal computed tomography (CT) and magnetic resonance imaging (MRI) scans. Therefore, present-day neuroimaging tools are insufficient to diagnose or classify low grades of TBI. Advanced neuroimaging techniques, such as diffusion-weighted and functional MRI, may yield novel biomarkers that may aid in the diagnosis of TBI. Therefore, the present study had two aims: first, to characterize the development of MRI-based measures of structural and functional changes in gray and white matter regions from acute to chronic stages after mild and moderate TBI; and second, to identify the imaging markers that can most accurately predict outcome after TBI. To these aims, 52 rats underwent serial functional (resting-state) and structural (T1-, T2-, and diffusion-weighted) MRI before and 1 h, 1 day, 1 week, 1 month and 3-4 months after mild or moderate experimental TBI. All rats underwent behavioral testing. Histology was performed in subgroups of rats at different time points. Early after moderate TBI, axial and radial diffusivities were increased, and fractional anisotropy was reduced in the corpus callosum and bilateral hippocampi, which normalized over time and was paralleled by recovery of sensorimotor function. Correspondingly, histology revealed decreased myelin staining early after TBI, which was not detected at chronic stages. No significant changes in individual outcome measures were detected after mild TBI. However, multivariate analysis showed a significant additive contribution of diffusion parameters in the distinction between control and different grades of TBI-affected brains. Therefore, combining multiple imaging markers may increase the sensitivity for TBI-related pathology.


Subject(s)
Brain Injuries, Traumatic/pathology , Diffusion Tensor Imaging/methods , Gray Matter/pathology , Neuroimaging/methods , White Matter/pathology , Animals , Disease Models, Animal , Image Processing, Computer-Assisted/methods , Male , Rats , Rats, Sprague-Dawley
10.
JAMA Oncol ; 7(7): 1024-1032, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33956083

ABSTRACT

IMPORTANCE: Cardiovascular disease (CVD) is common in patients treated for breast cancer, especially in patients treated with systemic treatment and radiotherapy and in those with preexisting CVD risk factors. Coronary artery calcium (CAC), a strong independent CVD risk factor, can be automatically quantified on radiotherapy planning computed tomography (CT) scans and may help identify patients at increased CVD risk. OBJECTIVE: To evaluate the association of CAC with CVD and coronary artery disease (CAD) in patients with breast cancer. DESIGN, SETTING, AND PARTICIPANTS: In this multicenter cohort study of 15 915 patients with breast cancer receiving radiotherapy between 2005 and 2016 who were followed until December 31, 2018, age, calendar year, and treatment-adjusted Cox proportional hazard models were used to evaluate the association of CAC with CVD and CAD. EXPOSURES: Overall CAC scores were automatically extracted from planning CT scans using a deep learning algorithm. Patients were classified into Agatston risk categories (0, 1-10, 11-100, 101-399, >400 units). MAIN OUTCOMES AND MEASURES: Occurrence of fatal and nonfatal CVD and CAD were obtained from national registries. RESULTS: Of the 15 915 participants included in this study, the mean (SD) age at CT scan was 59.0 (11.2; range, 22-95) years, and 15 879 (99.8%) were women. Seventy percent (n = 11 179) had no CAC. Coronary artery calcium scores of 1 to 10, 11 to 100, 101 to 400, and greater than 400 were present in 10.0% (n = 1584), 11.5% (n = 1825), 5.2% (n = 830), and 3.1% (n = 497) respectively. After a median follow-up of 51.2 months, CVD risks increased from 5.2% in patients with no CAC to 28.2% in patients with CAC scores higher than 400. After adjustment, CVD risk increased with higher CAC score (hazard ratio [HR]CAC = 1-10 = 1.1; 95% CI, 0.9-1.4; HRCAC = 11-100 = 1.8; 95% CI, 1.5-2.1; HRCAC = 101-400 = 2.1; 95% CI, 1.7-2.6; and HRCAC>400 = 3.4; 95% CI, 2.8-4.2). Coronary artery calcium was particularly strongly associated with CAD (HRCAC>400 = 7.8; 95% CI, 5.5-11.2). The association between CAC and CVD was strongest in patients treated with anthracyclines (HRCAC>400 = 5.8; 95% CI, 3.0-11.4) and patients who received a radiation boost (HRCAC>400 = 6.1; 95% CI, 3.8-9.7). CONCLUSIONS AND RELEVANCE: This cohort study found that coronary artery calcium on breast cancer radiotherapy planning CT scan results was associated with CVD, especially CAD. Automated CAC scoring on radiotherapy planning CT scans may be used as a fast and low-cost tool to identify patients with breast cancer at increased risk of CVD, allowing implementing CVD risk-mitigating strategies with the aim to reduce the risk of CVD burden after breast cancer. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03206333.


Subject(s)
Breast Neoplasms , Cardiovascular Diseases , Coronary Artery Disease , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/radiotherapy , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cohort Studies , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Female , Humans , Risk Factors , Tomography, X-Ray Computed/methods
11.
Int J Radiat Oncol Biol Phys ; 111(4): 867-875, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34265394

ABSTRACT

PURPOSE: High-field magnetic resonance-linear accelerators (MR-Linacs), linear accelerators combined with a diagnostic magnetic resonance imaging (MRI) scanner and online adaptive workflow, potentially give rise to novel online anatomic and response adaptive radiation therapy paradigms. The first high-field (1.5T) MR-Linac received regulatory approval in late 2018, and little is known about clinical use, patient tolerability of daily high-field MRI, and toxicity of treatments. Herein we report the initial experience within the MOMENTUM Study (NCT04075305), a prospective international registry of the MR-Linac Consortium. METHODS AND MATERIALS: Patients were included between February 2019 and October 2020 at 7 institutions in 4 countries. We used descriptive statistics to describe the patterns of care, tolerability (the percentage of patients discontinuing their course early), and safety (grade 3-5 Common Terminology Criteria for Adverse Events v.5 acute toxicity within 3 months after the end of treatment). RESULTS: A total 943 patients participated in the MOMENTUM Study, 702 of whom had complete baseline data at the time of this analysis. Patients were primarily male (79%) with a median age of 68 years (range, 22-93) and were treated for 39 different indications. The most frequent indications were prostate (40%), oligometastatic lymph node (17%), brain (12%), and rectal (10%) cancers. The median number of fractions was 5 (range, 1-35). Six patients discontinued MR-Linac treatments, but none due to an inability to tolerate repeated high-field MRI. Of the 415 patients with complete data on acute toxicity at 3-month follow-up, 18 (4%) patients experienced grade 3 acute toxicity related to radiation. No grade 4 or 5 acute toxicity related to radiation was observed. CONCLUSIONS: In the first 21 months of our study, patterns of care were diverse with respect to clinical utilization, body sites, and radiation prescriptions. No patient discontinued treatment due to inability to tolerate daily high-field MRI scans, and the acute radiation toxicity experience was encouraging.


Subject(s)
Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Adult , Aged , Aged, 80 and over , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies , Registries , Young Adult
12.
Mol Imaging ; 9(5): 268-77, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20868627

ABSTRACT

AbstractInfiltrated monocytes play a crucial role in the demyelination process during multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS). Still, methods to monitor their infiltration pattern over time are lacking. In this study, magnetoelectroporation (MEP) was used to label rat monocytes with the superparamagnetic iron oxide particles Sinerem, Endorem, and Supravist. Supravist-labeled monocytes were injected in rats that we induced with experimental autoimmune encephalomyelitis, a model for MS. Imaging at 4.7 and 9.4 T revealed multiple foci of decreased signal intensity predominantly located in the cerebellum. Immunohistochemical evaluation confirmed the presence of intracellular iron in infiltrated cells, indicating the suitability of MEP to specifically follow labeled monocytes in vivo in this disease model. This technique may be further optimized and potentially used in MS patients to assess monocyte migration into the brain and to monitor the efficacy of therapeutic agents aimed at blocking cellular migration into the CNS.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Monocytes/chemistry , Monocytes/cytology , Multiple Sclerosis/pathology , Animals , Cells, Cultured , Dextrans/chemistry , Rats
13.
NMR Biomed ; 23(9): 1087-96, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20665906

ABSTRACT

Signal loss observed in the brain by MRI following the administration of ultrasmall superparamagnetic particles of iron oxide (USPIO) has been correlated with immune cell activity in inflammatory areas during multiple sclerosis. Uptake of USPIO by circulating monocytes and their migration towards inflammatory areas have been considered as the most important mechanism for USPIO uptake by the brain parenchyma. However, the involvement of a damaged blood-brain barrier is also debated as a possible mechanism for cerebral USPIO uptake. Compared with these uptake-associated issues, little is known about the clearance of USPIO from the brain. The acute uptake and chronic clearance of USPIO in the brain were therefore studied with MRI in an animal model of multiple sclerosis. Lewis Hannover rats with acute experimental autoimmune encephalomyelitis received a single intravenous injection of USPIO (300 µmol Fe/kg), and repetitive MRI of the brain and cervical lymph nodes, a possible drainage pathway, was performed. USPIO were detected in the brain within 1 h after injection independent of the severity of experimental autoimmune encephalomyelitis, and histological analysis revealed extracellular iron clusters colocalising with a leaky blood-brain barrier. Loss of signal was not present 72 h after USPIO injection, irrespective of the disease state. MR images of cervical lymph nodes showed USPIO accumulation at 24 h after administration, which stabilised at 72 h. Histological analyses revealed that USPIO accumulated in infiltrated macrophages in the medulla and subcapsular sinus. The current study demonstrates that USPIO enter the central nervous system directly after administration, pointing to the involvement of a damaged blood-brain barrier in the appearance of USPIO-associated MR abnormalities. Furthermore, a possible role of the cervical lymph nodes as a drainage pathway of USPIO is suggested. These data shed new light on the use of USPIO in neuroinflammatory diseases, identifying USPIO as a marker for both cellular infiltration and blood-brain barrier damage.


Subject(s)
Central Nervous System , Contrast Media/metabolism , Dextrans/metabolism , Encephalomyelitis, Autoimmune, Experimental , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Dextrans/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Male , Particle Size , Rats , Rats, Inbred Lew
14.
Eur Neuropsychopharmacol ; 33: 58-70, 2020 04.
Article in English | MEDLINE | ID: mdl-32151497

ABSTRACT

Obsessive-compulsive disorder (OCD) is increasingly considered to be a neurodevelopmental disorder. However, despite insights in neural substrates of OCD in adults, less is known about mechanisms underlying compulsivity during brain development in children and adolescents. Therefore, we developed an adolescent rat model of compulsive checking behavior and investigated developmental changes in structural and functional measures in the frontostriatal circuitry. Five-weeks old Sprague Dawley rats were subcutaneously injected with quinpirole (n = 21) or saline (n = 20) twice a week for five weeks. Each injection was followed by placement in the middle of an open field table, and compulsive behavior was quantified as repeated checking behavior. Anatomical, resting-state functional and diffusion MRI at 4.7T were conducted before the first and after the last quinpirole/saline injection to measure regional volumes, functional connectivity and structural integrity in the brain, respectively. After consecutive quinpirole injections, adolescent rats demonstrated clear checking behavior and repeated travelling between two open-field zones. MRI measurements revealed an increase of regional volumes within the frontostriatal circuits and an increase in fractional anisotropy (FA) in white matter areas during maturation in both experimental groups. Quinpirole-injected rats showed a larger developmental increase in FA values in the internal capsule and forceps minor compared to control rats. Our study points toward a link between development of compulsive behavior and altered white matter maturation in quinpirole-injected adolescent rats, in line with observations in pediatric patients with compulsive phenotypes. This novel animal model provides opportunities to investigate novel treatments and underlying mechanisms for patients with early-onset OCD specifically.


Subject(s)
Brain/growth & development , Dopamine Agonists , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/psychology , Quinpirole , Animals , Behavior, Animal , Brain Mapping , Diffusion Magnetic Resonance Imaging , Grooming , Internal Capsule/diagnostic imaging , Locomotion , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Obsessive-Compulsive Disorder/chemically induced , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , White Matter/diagnostic imaging
15.
Sci Rep ; 10(1): 56, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31919379

ABSTRACT

An improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional and macro-scale diffusion-based structural connectivity, but no significant correlation between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on individual connections, we found strong functional connectivity in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Although characteristics of the applied techniques may affect where structural and functional networks (dis)agree, distinct structure-function relationships across the brain could also have a biological basis.


Subject(s)
Brain/physiology , Connectome/methods , Algorithms , Animals , Brain/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Rats , Rats, Wistar
16.
Front Oncol ; 10: 1328, 2020.
Article in English | MEDLINE | ID: mdl-33014774

ABSTRACT

Purpose: MR-guided Radiation Therapy (MRgRT) allows for high-precision radiotherapy under real-time MR visualization. This enables margin reduction and subsequent dose escalation which may lead to higher tumor control and less toxicity. The Unity MR-linac (Elekta AB, Stockholm, Sweden) integrates a linear accelerator with a 1.5T diagnostic quality MRI and an online adaptive workflow. A prospective international registry was established to facilitate the evidence-based implementation of the Unity MR-linac into clinical practice, to systemically evaluate long-term outcomes, and to aid further technical development of MR-linac-based MRgRT. Methods and Results: In February 2019, the Multi-OutcoMe EvaluatioN of radiation Therapy Using the MR-linac study (MOMENTUM) started within the MR-linac Consortium. The MOMENTUM study is an international academic-industrial partnership between several hospitals and industry partner Elekta. All patients treated on the MR-linac are eligible for inclusion in MOMENTUM. For participants, we collect clinical patient data (e.g., patient, tumor, and treatment characteristics) and technical patient data which is defined as information generated on the MR-linac during treatment. The data are captured, pseudonymized, and stored in an international registry at set time intervals up to two years after treatment. Patients can choose to provide patient-reported outcomes and consent to additional MRI scans acquired on the MR-linac. This registry will serve as a data platform that supports multicenter research investigating the MR-linac. Rules and regulations on data sharing, data access, and intellectual property rights are summarized in an academic-industrial collaboration agreement. Data access rules ensure secure data handling and research integrity for investigators and institutions. Separate data access rules exist for academic and industry partners. This study is registered at ClinicalTrials.gov with ID: NCT04075305 (https://clinicaltrials.gov/ct2/show/NCT04075305). Conclusion: The multi-institutional MOMENTUM study has been set up to collect clinical and technical patient data to advance technical development, and facilitate evidenced-based implementation of MR-linac technology with the ultimate purpose to improve tumor control, survival, and quality of life of patients with cancer.

17.
J Neurosci Methods ; 176(2): 152-6, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-18840466

ABSTRACT

BACKGROUND: Cerebral embolization models have been hindered by the fact that delivery is predominantly one-sided and cannot be quantified easily. We have developed a model for bilateral cerebral micro-embolization. By using holmium microspheres, it is possible to quantify intracerebral delivery using MRI. METHODS: To validate the quantification of holmium microspheres a phantom study was performed in which concentration of microspheres in solution was compared with the number of holmium-induced artifacts on MRI. After that identical microspheres were administered by unilateral injection in the carotid artery, while the opposite carotid artery was clamped. On post-injection MRI scans, intracerebral delivery and right/left distribution of the microspheres was determined. RESULTS: In the phantom study it was shown that quantification by MRI is possible and that MRI artifacts represent single microspheres. In the rat brain, about one-third of the injected dose was consistently located on the contralateral side. The administration was reproducible regarding distribution and number of microspheres. CONCLUSIONS: The use of holmium microspheres enables quantification of delivered dose as single microspheres induce artifacts on MRI. By clamping the contralateral carotid artery, one-third of the dose is diverted to the contralateral hemisphere.


Subject(s)
Holmium , Intracranial Embolism/chemically induced , Intracranial Embolism/pathology , Magnetic Resonance Imaging/methods , Microspheres , Animals , Carotid Arteries , Disease Models, Animal , Dose-Response Relationship, Drug , Functional Laterality/physiology , Injections, Intra-Arterial/methods , Male , Rats , Rats, Wistar , Reproducibility of Results
18.
J Neurol ; 255(2): 183-91, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18231704

ABSTRACT

OBJECTIVE: Cortical lesions in multiple sclerosis (MS) are notoriously difficult to visualize with standard MR imaging (MRI) techniques. However, the use of higher field-strengths with intrinsically higher signal-to-noise, which can partly be used to increase spatial resolution, may improve cortical lesion detection. Therefore, in this post mortem study, the sensitivity of high field-strength MRI (4.7 T) for cortical lesions was investigated, and compared to that of standard field-strength (1.5 T). METHODS: At 1.5 T, dual-echo T2-weighted spin-echo, as well as 3D-FLAIR images of seventeen formalin-fixed coronal MS and four control hemispheres were acquired. At 4.7 T, the same specimens were imaged with a mainly proton-density (PD)- weighted sequence. Proteolipid protein (PLP)-stained tissue sections (10 microm) of the same brain slices were matched to the corresponding MR images, and cortical lesions were scored on all three MR sequences (blinded to histology) and in tissue sections (blinded to MRI). Sensitivity of the sequences for four cortical lesion types was calculated. Additionally, an unblinded, retrospective MR scoring was performed. RESULTS: Sensitivity for purely intracortical lesions (histological lesion types II, III, and IV; n = 128) was below 10 % for both 1.5 T and 4.7 T MRI, while mixed gray matter-white matter (type I) lesions (n = 5) were detected in four out of five cases. All lesion counts increased upon retrospective (unblinded) scoring. However, up to 80% of the intracortical lesions still remained undetected. CONCLUSIONS: MRI sensitivity for post mortem detection of cortical lesions is low, even when a higher field-strength was used. It varies, however, for different subtypes of cortical lesions.


Subject(s)
Cerebral Cortex/pathology , Multiple Sclerosis/pathology , Adult , Aged , Aged, 80 and over , Artifacts , Autopsy , Female , Fixatives , Formaldehyde , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Tissue Fixation
19.
Neuron ; 100(1): 61-74.e2, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30269990

ABSTRACT

Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets.


Subject(s)
Brain , Datasets as Topic , Neuroimaging , Animals , Brain/anatomy & histology , Brain/physiology , Connectome/methods , Information Dissemination/methods , Magnetic Resonance Imaging , Primates
20.
Drug Discov Today ; 11(1-2): 58-66, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16478692

ABSTRACT

Multiple sclerosis is a serious neurological disease that affects 1 in 1000 young adults in Europe and the USA. The development of an effective therapy for this enigmatic disease is plagued by the failure of many treatments to reproduce in patients the promising effects observed in animal models. This review describes a new preclinical model in a non-human primate that might help to bridge the gap between currently used animal models and the patients.


Subject(s)
Disease Models, Animal , Immunotherapy , Magnetic Resonance Imaging , Multiple Sclerosis/therapy , Animals , Brain/pathology , Callithrix , Multiple Sclerosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL