Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Tohoku J Exp Med ; 246(1): 35-44, 2018 09.
Article in English | MEDLINE | ID: mdl-30224590

ABSTRACT

Glutathione S-transferases (GSTs), a superfamily of multifunctional enzymes, play an important role in the onset and progression of renal cell carcinoma (RCC). However, novel GST omega class (GSTO), consisting of GSTO1-1 and GSTO2-2 isoenzymes, has not been studied in RCC yet. Two coding single nucleotide polymorphisms (SNPs) supposedly affect their functions: GSTO1*C419A (rs4925) causing alanine to aspartate substitution (*A140D) and GSTO2*A424G (rs156697) causing asparagine to aspartate substitution (*N142D), and have been associated with several neurodegenerative diseases and cancers. Functional relevance of yet another GSTO2 polymorphism, identified at the 5' untranslated (5'UTR) gene region (GSTO2*A183G, rs2297235), has not been clearly discerned so far. Therefore, we aimed to assess the effect of specific GSTO1 and GSTO2 gene variants, independently and in interaction with established risk factors (smoking, obesity and hypertension) on the risk for the most aggressive RCC subtype, the clear cell RCC (ccRCC). Genotyping was performed in 239 ccRCC patients and 350 matched controls, while plasma levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage, were determined by ELISA. As a result, combined effect of all three variant genotypes exhibited almost 3-fold risk of RCC development. Additionally, this association was confirmed at the haplotype level [variant GSTO1*A/GSTO2*G (rs156697)/GSTO2*G (rs2297235) haplotype], suggesting a potential role of those variants in propensity to RCC. Regarding the gene-environment interactions, variant GSTO2*G (rs156697) homozygous smokers are at higher ccRCC risk. Association in terms of oxidative DNA damage was found for GSTO2 polymorphism in 5'UTR and 8-OHdG. In conclusion, the concomitance of GSTO polymorphisms may influence ccRCC risk.


Subject(s)
Carcinoma, Renal Cell/genetics , Genetic Predisposition to Disease , Glutathione Transferase/genetics , Kidney Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , 8-Hydroxy-2'-Deoxyguanosine , Case-Control Studies , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Female , Haplotypes/genetics , Humans , Hypertension/genetics , Male , Middle Aged , Obesity/genetics , Risk Factors
2.
PLoS One ; 11(8): e0160570, 2016.
Article in English | MEDLINE | ID: mdl-27500405

ABSTRACT

The aim of this study was to evaluate specific glutathione S-transferase (GST) gene variants as determinants of risk in patients with clear cell renal cell carcinoma (cRCC), independently or simultaneously with established RCC risk factors, as well as to discern whether phenotype changes reflect genotype-associated risk. GSTA1, GSTM1, GSTP1 and GSTT1 genotypes were determined in 199 cRCC patients and 274 matched controls. Benzo(a)pyrene diolepoxide (BPDE)-DNA adducts were determined in DNA samples obtained from cRCC patients by ELISA method. Significant association between GST genotype and risk of cRCC development was found for the GSTM1-null and GSTP1-variant genotype (p = 0.02 and p<0.001, respectively). Furthermore, 22% of all recruited cRCC patients were carriers of combined GSTM1-null, GSTT1-active, GSTA1-low activity and GSTP1-variant genotype, exhibiting 9.32-fold elevated cRCC risk compared to the reference genotype combination (p = 0.04). Significant association between GST genotype and cRCC risk in smokers was found only for the GSTP1 genotype, while GSTM1-null/GSTP1-variant/GSTA1 low-activity genotype combination was present in 94% of smokers with cRCC, increasing the risk of cRCC up to 7.57 (p = 0.02). Furthermore, cRCC smokers with GSTM1-null genotype had significantly higher concentration of BPDE-DNA adducts in comparison with GSTM1-active cRCC smokers (p = 0.05). GSTM1, GSTT1, GSTA1 and GSTP1 polymorphisms might be associated with the risk of cRCC, with special emphasis on GSTM1-null and GSTP1-variant genotypes. Combined GSTM1-null, GSTT1-active, GSTA1 low activity and GSTP1-variant genotypes might be considered as "risk-carrying genotype combination" in cRCC.


Subject(s)
Carcinoma, Renal Cell/genetics , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Kidney Neoplasms/genetics , Aged , Case-Control Studies , Female , Genetic Predisposition to Disease , Glutathione Transferase/metabolism , Humans , Male , Middle Aged , Polymorphism, Genetic , Smoking/genetics
SELECTION OF CITATIONS
SEARCH DETAIL