Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 102(20): 8647-8660, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30094590

ABSTRACT

Heparin is a highly sulfated polysaccharide which belongs to the family of glycosaminoglycans. It is involved in various important biological activities. The major biological purpose is the inhibition of the coagulation cascade to maintain the blood flow in the vasculature. These properties are employed in several therapeutic drugs. Heparin's activities are associated with its interaction to various proteins. To date, the structural heparin-protein interactions are not completely understood. This review gives a general overview of specific patterns and functional groups which are involved in the heparin-protein binding. An understanding of the heparin-protein interactions at the molecular level is not only advantageous in the therapeutic application but also in biotechnological application of heparin for downstreaming. This review focuses on the heparin affinity chromatography. Diverse recombinant proteins can be successfully purified by this method. While effective, it is disadvantageous that heparin is an animal-derived material. Animal-based components carry the risk of contamination. Therefore, they are liable to strict quality controls and the validation of effective good manufacturing practice (GMP) implementation. Hence, adequate alternatives to animal-derived components are needed. This review examines strategies to avoid these disadvantages. Thereby, alternatives for the provision of heparin such as chemical synthesized heparin, chemoenzymatic heparin, and bioengineered heparin are discussed. Moreover, the usage of other chromatographic systems mimetic the heparin effect is reviewed.


Subject(s)
Chromatography, Affinity/instrumentation , Heparin/chemistry , Proteins/isolation & purification , Animals , Chromatography, Affinity/methods , Heparin/chemical synthesis , Heparin/isolation & purification , Humans , Proteins/chemistry
2.
J Chromatogr A ; 1626: 461367, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32797846

ABSTRACT

This paper analyzes the use of animal-component free chromatographic materials for the efficient purification of the human fibroblast growth factor 2 (hFGF-2). hFGF-2 is produced in Escherichia coli and purified via three different chromatography steps, which include a strong cation exchange chromatography as a capture step, followed by heparin affinity chromatography and an anion exchange chromatography as a polishing step. The affinity chromatography step is based on the animal-derived material heparin. Chemically produced ligands provide a viable alternative to animal-derived components in production processes, since they are characterized by a defined structure which leads to reproducible results and a broad range of applications. The alternative ligands can be assigned to adsorber of the mixed-mode chromatography (MMC) and pseudo-affinity chromatography. Eight different animal-component free materials used as adsorbers in MMC or pseudo-affinity chromatography were tested as a substitute for heparin. The MMCs were cation exchangers characterized with further functional residues. The ligands of the pseudo-affinity chromatography were heparin-like ligands which are based on heparin's molecular structure. The alternative methods were tested as a capture step and in combination with another chromatographic step in the purification procedure of hFGF-2. In each downstream step purity, recovery and yield were analysed and compared to the conventional downstream process. Two types of MMC - the column ForesightTM NuviaTM cPrimeTM from Bio-Rad Laboratories and the column HiTrapTM CaptoTM MMC from GE Healthcare Life Sciences - can be regarded as effective animal-component free alternatives to the heparin - based adsorber.


Subject(s)
Fibroblast Growth Factor 2/isolation & purification , Adsorption , Animals , Chromatography, Affinity , Chromatography, Ion Exchange , Heparin/chemistry , Humans , Ligands
3.
J Funct Biomater ; 10(3)2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31480684

ABSTRACT

Proteins derived from the natural extracellular matrix like collagen or gelatin are common in clinical research, where they are prized for their biocompatibility and bioactivity. Cells are able to adhere, grow and remodel scaffolds based on these materials. Usually, collagen and gelatin are sourced from animal material, risking pathogenic transmission and inconsistent batch-to-batch product quality. A recombinant production in yeast circumvents these disadvantages by ensuring production with a reproducible quality in animal-component-free media. A gelatin mimetic protein, based on the alpha chain of human collagen I, was cloned in Pichia pastoris under the control of the methanol-inducible alcohol oxidase (AOX1) promoter. A producing clone was selected and cultivated at the 30 L scale. The protein was secreted into the cultivation medium and the final yield was 3.4 g·L-1. Purification of the target was performed directly from the cell-free medium by size exclusion chromatography. The gelatin mimetic protein was tested in cell culture for biocompatibility and for promoting cell adhesion. It supported cell growth and its performance was indistinguishable from animal-derived gelatin. The gelatin-mimetic protein represents a swift strategy to produce recombinant and human-based extracellular matrix proteins for various biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL